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Summary

The Rust programming language is a statically-typed programming language
designed for both performance and safety, currently under development by
Mozilla Research and the Rust community. Rust not only supports modern
programming constructs such as macros, traits, ownership, and lifetimes in
a syntax similar to C++, but also provides low-cost abstractions and memory
safety without garbage collection. Consequently, it has found wide adoption
as a “systems programming” language, and has been increasingly used in
systems-level applications traditionally programmed in C code.

A plethora of legacy C code exist dormant in codebases that would benefit
in terms of performance and safety if they were rewritten in Rust. However,
manually porting these codebases is daunting and non-trivial because of Rust’s
ownership type system and its strict discipline on memory access.

While tools exist to automatically translate C into Rust, the translations are
purely syntactic, mimicking the original C code and bypassing the safety checks
of the Rust compiler through Rust’s unsafe annotation. Thus, while the code
is Rust in text, it is not Rust in spirit — the safety properties of Rust that are so
desirable are elided.

This thesis describes a framework, CHRusrty, for translating C to safer and
more idiomatic Rust. Our theoretical contribution is this general framework for
refactoring automatically translated Rust. We accomplish this by collecting
constraints; a solution to the constraints point us towards the necessary changes,
as the collected constraints inform our semantics-preserving rewrites. We provide
an instantiation of this framework that removes conservative unsafe blocks and
lifts raw pointers to arrays. Our practical contribution is an implementation of

the array-rewrite instantiation of CHRusTy as a tool written in Rust.
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Introduction

Rust is a modern programming language currently developed by Mozilla Re-
search with a thriving open source community. It began as a personal project
by a disgruntled programmer because of a malfunctioning elevator in 2006,
before releasing its official version 1.0 in 2015, and is now supported by the Rust
foundation. Rust is specifically designed with both safety and performance in
mind, providing efficient yet reliable systems through low-level control, low-cost
abstractions, and memory safety combined with the convenience and guarantees
of modern and higher level constructs such as ownership, lifetimes, macros,
generics, and traits [SCP17]. To this end, Rust provides strong static guarantees
about memory and thread safety while avoiding garbage collection and still
allowing for low-level manipulations.

Because of these qualities, Rust is often referred to as a “systems programming”
language, and has seen adoption in building operating systems [Lev+15], garbage
collectors [Lin+16], web browsers [And+15]. Furthermore, large and complex
projects with both legacy and production codebases written in performant
languages like C/C++ are increasingly being ported over to Rust: Firefox [Bry16],
Android [SH21], and the Linux kernel [Cor21; EIh20]. More recently, Amazon
has released an open-source Rust implementation of the QUIC protocol for
HTTP/3 in their AWS encryption open-source library, citing “security [and] high
performance” [Kam22].

By enforcing an ownership system that governs the capabilities to read and

modify memory locations through borrowing and lifetimes, Rust guarantees

Thttps://twitter.com/mostlygeek/status/1492770712150413319
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memory safety and thread safety as dangling pointers, iterator invalidation,
concurrent data races, and so on, are automatically prevented. Furthermore, these
guarantees are provided “almost for free”. That is, they are statically checked
at compile-time. Thus, existing codebases written in C/C++ can benefit from a
Rust port, taking a small, possibly neglible hit (or even gain!) in performance
in exchange for guarantees about memory and thread safety. For instance, a
study performed on cURL, a data transfer utility library written in C, found
that a Rust port would eliminate 53 of the 95 known cURL security flaws, at

compile-time [Hut21]!

1.1 Why Automated Translation to Safe Rust?

Here is a disconcerting fact: there are plenty of codebases, known or unknown,
with critical bugs and security flaws [Dur+14], potentially at great human and
monetary costs [Dur+14; LT93; Dow97; ABC17]. Formally verifying these com-
plex codebases is highly non-trivial and typically requires human intervention.

Even within Rust codebases, about 44.6% of unsafe function definitions were
bindings for foreign functions used for linking against C libraries, suggesting
that porting these C libraries to safe Rust would reduce the overall unsafety
in the Rust ecosystem [Ast+20]. Porting existing codebases to Rust would not
eliminate all bugs and flaws, but Rust’s memory and thread safety guarantees
provided almost for-free is a step in the right direction in reducing errors and
attendant costs.

However, porting existing codebases to a new language is obviously an
arduous task. With that, an automated translation of C into safe Rust, if possible,
would eliminate a whole class of bugs automatically while preserving the
semantics of the original C code, and can also present a method for discovering
potential vulnerabilities. In fact, beyond eliminating bugs, it is possible that
the resultant Rust code is more performant: by ruling out pointer aliasing, of
which information is difficult to obtain [Hor97], program transformations that
include but are not limited to reordering of statements can be performed as part

of optimizations by a compiler [GLS01; WL95].



But safe Rust is not the only quality we can aspire towards — the automatically
translated Rust code should also be idiomatic. We want the outcome of automati-
cally translating a C codebase to be readable, and to begin to resemble something
a human would write rather than code that has been coerced to abide by the Rust
compiler’s rules. Having such a property would be extremely desirable, as the
tool would not be the final step of a translation pipeline; rather, programmers
would be able to use the tool, and then carry on coding in Rust, using the safe
and idiomatic Rust code as a starting point.

This thesis therefore investigates such an automated translation of C into
safer and more idiomatic Rust. However, it is exactly Rust’s expressive type system
which guarantees memory and thread safety that presents a significant hurdle to
automated translation: translating unsafe C to safe Rust code involves reasoning
about properties of the C code in order to craft a semantically equivalent Rust

program, whose safe-ness is captured in the Rust program being well-typed.

1.2 Contributions and Overview

In the following chapters, we describe a framework for automated translation of

C into safer and more idiomatic Rust. We present several key contributions:

1. A translation pipeline from C to safer Rust: we use an industry-supported
tool, c2rust,? to go from C to unsafe Rust, before running our tool to refactor

unsafe Rust to safer and more idiomatic Rust.

2. Aframework, CHRusry, for rewriting unsafe Rust into safer and more idiomatic
Rust. The framework is based on constraint collection, solving the constraint
system, and finally using the constraint system to inform a set of semantics-

preserving rewrite rules.
3. An instantiation of this framework for lifting raw pointers to arrays.

4. A practical implementation of this instantiation of CHRusry in the form of a

tool written in Rust.

5. An evaluation of CHRusTtY on several case studies.

2https://c2rust.com/
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The thesis is structured as follows. We begin by providing some background in
Ch. 2 about Rust, and how its sophisticated type system allows it to statically
provide memory and thread safety guarantees. Then, in Ch. 3, we discuss
existing work around automated translation from C to safe Rust, including an
industry-backed tool called c2rust that we employ. We also explore related
work in refactoring using type constraints, as well as closely-related efforts in
refactoring Rust. Next, in Ch. 4, we describe the design of our framework as
an algorithm that performs a principled translation via semantic-preserving
rewrites informed by a solved constraint system. In particular, we look into an
instantiation of this framework for lifting raw pointers to arrays. Ch. 5 details our
practical implementation of the tool in Rust, alongside engineering to overcome
several nontrivialities in writing our refactoring tool in Rust. Ch. 6 provides an
evaluation of our tool on case studies. Finally, Ch. 7 concludes by comparing our
results to closely-related efforts, discussing other instantiations of our framework,

and exploring future work on the project.



Background

2.1 The Rust Programming Language

Rust is a programming language that provides static guarantees on memory
safety, with no need for garbage collection, via its advanced type system features
like affine types and regions. It has an interface with C and C++, features
numerous object-oriented programming idioms like traits and generics as well as
functional programming idioms like pattern matching and closures, and presents
itself in a syntax similar to C++. Most of these features are zero-cost abstractions,

lending to performance on par with C and C++ while being memory-safe.

2.1.1 Ownership in Rust

The key defining feature of Rust is how it ensures memory safety. Rust uses
an ownership model to statically reason about references, mutability, lifetimes.
The goal of Rust’s memory management is simple: unreachable memory is
deallocated memory, and no uninitialized memory should ever be read.

This is achieved via maintaining two invariants. Firstly, all allocated memory
has a unique owner that is responsible for eventually deallocating it. Secondly, no
memory can be simultaneously aliased, and mutable. For the Rust programmer,
this is governed by a set of rules referred to as ownership; memory is managed
through a system of ownership, and violations of the rules of ownership are
caught at compile-time [KN21a]. These ownership rules preserve the two

invariants of Rust’s memory management [KN21a], and are presented as follows:

1. Each value in Rust has a variable that is its owner.
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2. There can only be one owner at a time.
3. When the owner goes out of scope, the owned value is dropped.

The compiler uses an affine type system to track such ownership. Consider
the following code snippet:

fn main() {

let first_owner = "Hello, World!".to_string();

let second_owner = first_owner;

println! ("{}", first_owner);

3

We first assign the string “Hello, World!” to first_owner, and then assign
first_owner to second_owner. According to the rules of ownership, each value in
Rust has only one owner at a time, and first_owner is no longer considered as

valid. When first_owner is used in the print statement, the Rust compiler raises
an error to prevent use of the invalidated reference:

error[E0382]: borrow of moved value: ‘first_owner*

--> src/main.rs:4:20

[

| let first_owner = "Hello,.World!".to_string(Q);

[ move occurs because ‘first_owner ‘ has type ‘String°‘,

| which does not implement the ‘Copy‘ trait

| let second_owner = first_owner;

1 value moved here

| println!("{}", first_owner);

| AAAAAAAAAAAN yalue borrowed here after move

This essentially statically rules out double-free errors, amongst numerous
others common memory bugs.

The ownership of a variable abides by the same pattern every time: assigning
a value to another variable moves it, and when a variable that includes data on
the heap goes out of scope, the value will be automatically dropped.

However, one can observe that this quickly gets tedious: what if we just want

a function to use a value, but not take ownership of it? Would Rust programmers

always have to pass back anything that was passed into a function?

2.1.2 Borrowing and References

Luckily, Rust provides a notion of references. The key insight is that memory

bugs occur when aliasing is mixed with mutability, i.e., when some memory is

6



accessible via multiple different paths, and is mutated. With this in mind, Rust
can provide references to data, and these references can even be mutable, so long
as they abide by what is known as the exclusion principle.

A reference is an address that can be followed to access data stored at that
address (like a pointer) that is owned by another variable. A reference can either
be immutable (1let x = &y), or mutable (let mut x = &mut y). These references
are governed by the exclusion principle: data can either be mutated through exactly
one reference, or it can be immutably shared amongst many references [Jun+19].

This ensures memory safety — consider the following example:

fn main() {

let mut my_vec = vec![1, 2];

let int_ptr = &mut my_vec[1]; // int_ptr points into v.
my_vec.push(3); // May reallocate initial memory
println! ("my_vec[1] = {}", *int_ptr); // Compiler raises an error

We have a heap-allocated array of vectors my_vec with type Vec<i32>. int_ptr
is a mutable reference of type &mut i32 pointing into the address where the data
of my_vec is stored. This is commonly referred to as an interior pointer. However,
observe in line 4, that when we attempt to push the value 3 onto my_vec, new
space on the heap may have to be allocated for my_vec if there is not enough
space for the value 3 in the original position. Consequently, mutating my_vec
may actually have a side effect of deallocating the memory on the heap that
my_vec initially pointed to. This is a bug known as “iterator invalidation”, and
the compiler flags this with the following error:

error[E0499]: cannot borrow ‘my_vec‘ as mutable more than once at a time
--> src/main.rs:4:5
|
3 | let int_ptr = &mut my_vec[1l];
it first mutable borrow occurs here
4 | my_vec.push(3);
| AAAAAAAAAAAAAA second mutable borrow occurs here
5 | println!("my_vec[1].=L{}", *int_ptr);

ittt first borrow later used here

The error arises because we performed a mutable borrow via my_vec.push(3)

in line 4, since my_vec.push(3) desugars to Vec::push(&mut my_vec,3). But in
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line 3, we also performed a mutable borrow when we assigned int_ptr as
&mut my_vec[1]. Consequently, the exclusion principle is violated; the compiler
complains, and we have avoided the “iterator invalidation” bug. This analysis
performed by the compiler is known as “borrow checking”, and relies on a notion
of “lifetime”:
fn main() {
let mut my_vec = vec![1, 2];
let int_ptr = &mut my_vec[1]; // Init: Lifetime ’a

Vec::push(&mut my_vec, 3); // Init: Lifetime ’b

println! ("my_vec[1] = {}", *int_ptr);

The compiler infers the following lifetimes for the borrows in lines 2 and 3.

Then it checks that
1. The reference can only be used while its lifetime is ongoing.

2. The original referent does not get used until the lifetime of its loan gets

expired.

However, in line 4, int_ptr is used, so the lifetime ’a has to last at least as
long as line 4 (rule 1). But, in line 3, my_vec is used while the lifetime of its loan
is not expired, violating rule 2, leading to a compilation error.

On the other hand, many immutable references to the same memory location
may exist together at the same time, but may not mutate. That is, immutable
references permit aliasing but not mutation. Immutable references abide by the
same rules as mutable references, but rule 2. is weakened: instead of checking
that the original referent does not get used, the compiler checks that the original

referent does not get mutated:

fn main(Q) {
let mut my_vec = vec![1, 2];
let int_ptrl = &my_vec[1]; // Init: Lifetime ’a
let int_ptr2 = &my_vec[1]; // Init: Lifetime ’b
println! ("my_vec[1] = {}", *int_ptrl);

println! ("my_vec[1] = {}", *int_ptr2);



2.1.3 Provenance of Unsafety

While the Rust ownership type system allows the compiler to statically guarantee
memory safety, sometimes the discipline it enforces on access and sharing of
memory locations is strict to the point that it limits expressiveness. That is,
the restrictions can make it difficult, or even impossible, to implement certain
common designs. For instance, data structures where the pointers form a cycle,
such as a doubly-linked list that requires aliasing, are extremely challenging to
implement in Rust [Ast+20]. In fact, there is even an unofficial guide to learning
Rust by writing different variants of linked lists.!

Rust allows programmers to selectively determine where restrictions of the
type system can be loosened by wrapping such code blocks as an unsafe block.
However, that is the extent of what unsafe permits: the code should still be
“correct”. Thatis, the behavior of the resulting program (and interaction of unsafe
and safe code) should not produce undefined behavior [KN21b].? Ensuring
that the unsafe block is correct is the programmer’s responsibility, and any
unsafe code should be hidden behind a safe abstraction. In fact, recent work has
attempted to verify such a property for a subset of Rust, and can even explicate
the verification condition necessary for a Rust library that uses unsafe features to
be considered safe [Jun+17].

The unsafe annotation grants access to the following features that may violate

the memory safety guarantees of Rust’s static semantics [KN21c]:

1. Dereferencing a raw pointer. A raw pointer is a variable that stores the
address of an object in memory, but whose lifetime is not controlled by a

smart pointer.3
2. Reading or writing a mutable or external static variable.
3. Accessing a field of a union, other than to assign to it.

4. Calling an unsafe function (including an intrinsic or foreign function).

Thttps://rust-unofficial.github.io/too-many-1lists/

2For an unexhaustive list of undefined behavior, see: https://doc.rust-lang.org/stable/
reference/behavior-considered-undefined.html

3Rust also provides smart pointers, which encapsulate raw pointers with additional metadata
and capabilities. Some examples of smart pointers in Rust include Box<T> for allocating values
on the heap, and String for string allocation on the heap.


https://rust-unofficial.github.io/too-many-lists/
https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html
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5. Implementing an unsafe trait (a trait with one or more unsafe methods).

fn main(){
let mut v = 1;
let raw_ptrl = &mut v as *mut i32;
let raw_ptr2 = raw_ptrl;
unsafe { *raw_ptrl = 2; }

unsafe { println !("{}", *raw_ptr2); } // Prints "2".

Listing 2.1: Aliasing and Mutating in unsafe Rust

Therefore, we can actually alias and mutate in Rust, as in Listing 2.1. The
onus is simply on us to reason and ensure that this is correct.

Note that the dereference of raw pointers that occur in lines 5 & 6 have to be
wrapped in unsafe blocks. Since the borrow checker does not track raw pointers,
it cannot guarantee that will not violate memory safety — therefore, the unsafe
block is a promise that we have sufficiently ensured memory safety even when

we dereference the raw pointers.

2.1.4 Discussion

For a more indepth introduction to Rust, one can visit the official introductory
book to Rust, “The Rust Programming Language” [KN21la]. For a detailed
reference to the Rust programming language, one can refer to the official

reference [KN21d].
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Related Work

In this chapter, we establish existing and related work upon which our framework
builds upon. We discuss program transformation, program transformation from
C to unsafe Rust via c2rust, the differences in sources of unsafety between auto-
matically translated Rust and idiomatic Rust, refactoring using type constraints,

and finally, closely-related efforts.

3.1 Program Transformation

Program transformation refers to changing a program’s source code into a
different source code. Program transformation is typically categorized into
the categories of (1) translation and (2) rephrasing. Translation refers to the
transformation from a particular language, for instance the C language, to another
language like Rust. This is akin to what c2rust does when it performs a syntactic
translation of C code to unsafe Rust (Sec. 3.2). On the other hand, rephrasing is
similar to transpilation — it is a transformation of source code of a language to
the same language. The category of rephrasing can be further refined: program
refactoring is a sub-category of program rephrasing that targets improving source
code quality. Program refactoring should not change the behavior of the program.

For our purposes, we are interested in a program transformation from C to
safer and more idiomatic Rust. We achieve this by a program translation from
C to unsafe Rust, then a program rephrasing to remove unsafety from unsafe
Rust, bringing us closer to safe Rust, and finally a program refactoring to lift raw

pointers to arrays, bringing us closer to idiomatic safe Rust. Nevertheless, in this

11



thesis, the terms rewrite and refactor are conflated, since our rewrites are intended

to be semantics-preserving.

3.2 Automatic Translation with c2rust

c2rust is an industry-backed tool to automatically translate C programs to
Rust [inc20a], and is the successor to earlier tools like Citrus [Dev17] and
Corrode [Shal7].

The c2rust transpiler translates a C program into an unsafe Rust program that
mirrors the C code. However, these translations are purely syntactic, and produce
memory and thread-unsafe Rust code by explicitly marking all translated code
as unsafe code blocks [inc20c]. Furthermore, c2rust does not provide any formal
guarantees that the resulting Rust code preserves the semantics of the original
C code, and so they also provide a cross-check tool (Sec. 7.3.1) that compares the
execution traces of two programs on a test input and validates that the semantics
of the original program is indeed preserved [inc20b].

We leverage c2rust in our translation pipeline to take the original C program,
and produce an initially unsafe Rust program. Then, we use this unsafe Rust
program to perform our semantics-preserving incremental rewrites, as we will

describe in Ch. 4.

3.3 Unsafety in Automatically Translated Rust code

Before we dive into the translation framework, we first investigate sources of
unsafety in automatically translated Rust code.

Evans et al. [ECS20] observe that the use of unsafe blocks may actually
result from an internal unsafe block in another function. Thus, they keep track
of potentially unsafe functions by examining the callgraph of Rust programs,
and found that 89.2% of potentially unsafe functions were because of unsafe
propagation from calling other unsafe functions. For our framework, this points
towards an approach where we begin from the “leaf” functions in the callgraph
of a program, and work our way upwards towards the “root”, i.e., the main

function.

12



Further, Emre et al. [Emr+21] note that the sources of unsafety in Rust
code that is automatically translated significantly differs from the sources of
unsafety in idiomatic Rust code. Primarily, c2rust translates C-style pointers into
raw pointers, and in Rust, the dereference of a raw pointer necessitates being
wrapped in an unsafe block (Sec. 2.1.3). Thus, legitimate sources of unsafety
in automatically translated Rust code stem prevalently from this conversion of

pointers from C.

3.4 Refactoring using Type Constraints

Refactoring is the process of modifying a program’s source code without altering
the behavior of the program, with the goal of improving the quality of the source
code [Fow18]. Existing work has looked into automated refactoring of Rust
programs for syntactic clarity (variable renaming, inlining, lifetime elission from
function signatures) [SCP17], as well as idiomatic refactoring for the corrode
C-to-Rust translator [Zbo], which has since been superseded by c2rust.

Type constraints are a formalism to express the constraints that must be
satisfied for a program to be type-correct [PS94; PS91]. While initially used
to tackle type-checking and type-inference of object-oriented languages, it has
recently been observed that source code modifications can be informed by a
system of type constraints [TKB03; Tip+11]. By constructing a system of type
constraints over the original program, a solution to the constraint system not
only asserts the type safety of the proposed transformation, but also indicates

possible refactorings.

3.5 An Existing Translator: Laertes

Emre et al. [Emr+21; ES21] present the first technique for automatically removing
some sources of unsafety in translated Rust programs. Their technique generates
safer Rust programs by optimistically converting a subset of raw pointers into
safe references, and then using the Rust compiler as an oracle to iteratively refine
the program.

Their technique hinges on the observation that raw pointers form the largest

13



source of unsafety in automatically translated Rust code. Thus, raw pointers
are optimistically rewritten, regardless of what they were initially intended to be
used for. Consequently, by treating raw pointers as ground truth for unsafety, a
uniform rewrite is applied to all instances of raw pointers iteratively, using the
compiler as oracle. However, this leads to unwieldy and unidiomatic Rust code
(see: Listing 7.1), which goes against the principles of code refactoring: code
quality should monotonically increase [Fow18]. Readability of automatically
translated code is of paramount importance — while this may be a non-issue if
one were just translating legacy code for the sake of verification, ongoing projects
for which automated translation serves as a foundation for subsequent ports

require readable code, so that developers can interact with the code base.

3.6 Our Approach

We approach the problem of rewriting unsafe code into safe code differently
from Laertes, since we want to also have idiomatic code. Instead of rewriting
from bottom-up — from raw pointers in the function upwards — we bubble
unsafety downwards, starting from the function’s signature, by applying specially
designed semantics-preserving rewrites. These rewrites are informed by a system
of type constraints that are constructed over the unsafe c2rust-translated Rust
program. By collecting constraints regarding the use of raw pointers as well as
type information, the solution to the type constraint system indicates when raw
pointers are intended to be used as arrays, allowing us to “lift” raw pointers to
arrays in a semantics-preserving fashion. Thus, not only do we eliminate code
conservatively marked as unsafe, but we also refactor the source code to be more
idiomatic by performing a rewrite in keeping with the intention of the original
program instead of simply a syntactic refactoring, resulting in higher-quality

code.
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A Framework For
Semantics-Preserving Translations

Refactoring is the process of changing a software system in such a way that it does not

alter the external behaviour of the code yet improves its internal structure.
— M. Fowler [Fow18]

We describe, in this chapter, our framework for automated translation of
C code to safer Rust. The framework (Fig. 4.1) is intended to be generic, and is
designed to take in different “rewrite passes” as parameters to iteratively refactor
the Rust code until it resembles what the user wants. That s, specificinstantiations
of the system refer to parameterizing the system with a specific choice of constraint
collection rules, constraint solver rules, and the transformation rules. This generic
framework is referred to as CHRusty,! and we present an implementation of the
array-rewrite instantiation of the CHRusty framework which refactors c2rust-
translated, unsafe code into safer, more idiomatic Rust code by lifting raw pointers

to arrays.

4.1 The Translation Pipeline

4.1.1 The Scope of the Translation

While we provide a generic framework, we limit the scope of this thesis to
tackling specifically the problem of lifting raw pointers to arrays. As rewriting
the entirety of the C language may be too ambitious, we restrict our target
domain of safe Rust to the subset of trivially safe Rust that includes non-heap

manipulating code, together with raw pointers that are semantically intended to

LCHRusty: C to Rust via CHR.
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Figure 4.1: Framework for Automatic Translation from C to safer Rust

be used as static or dynamic arrays. Hence, our goal is to remove as much of the
conservatively-labelled unsafe annotations, and to lift a subset of raw pointers to
arrays. In particular, we aim to perform the rewrites in an idiomatic fashion that
represents the intent of the original code, so that the rewritten Rust code can be

further expanded upon by a developer.

4.1.2 Pipeline

We now present the framework, as illustrated in Fig. 4.1. Firstly, given a code
base written in C, we transform the code base into unsafe Rust by leveraging
the c2rust tool. As described in Sec. 3.2, c2rust is an industry-backed tool that
allows for automatic translation of C programs into Rust. However, as a by-
product of the syntactic translation, the resulting code is conservatively marked
as unsafe. Furthermore, the sources of unsafety in automatically translated code
differ significantly from those in idiomatic Rust code as explored in Sec. 3.3.
Since c2rust merely performs a syntactic rewrite, it does not cross the hurdle of
reasoning about properties of the C and resulting Rust code to remove unsafety.
Thus, a large chunk of the translated Rust code need not actually be marked unsafe,
but is done so out of convenience.

Our first observation is that rewriting C code into safe Rust directly is
incredibly challenging and non-trivial. One would have to design and implement
a series of static analyses on the original C code that can reason about lifetimes,
ownership, and aliasing in keeping with Rust’s sophisticated type system, and
then construct a set of rewrite rules based on the analyses. Instead of trying
to tackle this problem as a whole, we opt to “hill-climb”: by using c2rust to

generate Rust code that is conservatively marked as unsafe, we can incrementally
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remove unsafety by traversing through the code and bubbling unsafety down
from the function level, to the statement level, and so on.

Consider the motivating example in Listing 4.1. The reset function, written
in C, takes as input arr, which is a pointer to an int, and size which is an int.

1 void reset(int* arr, int size) {
2 int i = 0;

while (i<size) {
4 *Carr + i) = 0;

5 i+ +;

Listing 4.1: Motivating Example: Resetting Arrays in C

Then, starting from the ith offset from the memory address of arr, it sets the
value at this address to 0, before incrementing i. This repeats until i = size.

Instead of rewriting reset immediately into safe Rust, we employ c2rust to
automatically rewrite this into Rust code. c2rust then conservatively labels the
function as unsafe:

| pub unsafe extern "C" fn reset(mut arr: *mut libc::c_int,
2 mut size: libc::c_int) {
let mut i: libc::c_int = ® as libc::c_int;
4 while i < size {
*arr.offset(i as isize) = 0 as libc::c_int;

6 i+4=1

Listing 4.2: Resetting Arrays, c2rust output

Given the unsafe Rust code emitted from the c2rust tool, we retrieve its
AST and give each of the nodes a unique label (Sec. 4.3.1). Then, the labels are
assigned some constraints depending on what the nodes represent (Sec. 4.3.3,
Sec. 4.3.6). These constraints are collected, parsed, and handed over to our
Constraint Handling Rules (CHR) system (Sec. 4.3.4), a declarative, rule-based
constraint solver, of which we use a Prolog implementation of the KU Leuven

CHR system [Frii94; SD04].> We parse the output and collect the resolved

2Available at https://www.swi-prolog.org/man/chr.html
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I fn reset<T: IndexMut<usize, Output = i32>>(mut arr: &mut T, size: usize) {
2 let mut i: usize = 0;
while i < size {
4 arr[i]= 0;
5 i+=1

5
6 },

Listing 4.3: Resetting Arrays, safe Rust

constraints from the CHR system, performing some necessary engineering like
storing the results in a union-find data structure to allow easy access to the
equivalence classes of labels (Sec. 5.3.1). Next, we perform our rewrite pass on
the unsafe Rust code, which queries the resolved constraints for information
about the program so that it can perform the refactoring (Sec. 4.4). Ultimately,
we should end up with reset in safe Rust as in Listing 4.3, though the details
about how we lift the raw pointer into arrays are left for later.

Finally, we want to propagate the changes made locally in a function across
the whole program, so we update the call sites of the function to reflect this
(Sec. 4.4.2). This takes place for every rewrite pass we have in our system. As
discussed in Sec. 4.1.1, for the purposes of this thesis, we only provide a pass to

handle conservative unsafe blocks, and the lifting of raw pointers to arrays.

4.2 Description of the Algorithm

4.2.1 Generic Algorithm for Rewrite Passes

Algorithm 4.2.1: A general algorithm for rewrites

Function Main(src):

call_graph « build_callgraph(src);

rewrite_passes < {arr_pass};

for (curr_fn, callers) in call_graph do

for rewrite_pass in rewrite_passes do
‘ rewrite_pass(curr_fn);

end

for caller_fn in callers do
| update_callsite(caller_fn);

end

end

Here, algorithm 4.2.1 describes the top-level algorithm for performing

rewrites, while algorithm 4.2.3 describes an instantiation of our framework:
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a particular rewrite for arrays implemented by CHRusty, which we call arr_pass.
Firstly, algorithm 4.2.1 takes as input a “source” file. We will go into more details
about the practical implementation in Ch. 5, but for now this can be understood
as either the 1ib.rs file generated as part of the Rust project translated from
c2rust that provides information about all the constituent files and functions in
the project, or the main.rs file.

Since our rewrite pass arr_pass operates on the level of functions, we have to
take care to perform our rewrite in the direction callee — caller instead of

rewrite

caller e callee so that we can propagate the necessary information and
changes. Thus, we first construct a callgraph from 1ib.rs, which is a control-flow
graph that represents the calling relationship between the functions (line 2).
The callgraph is a set of pairs (curr_fn, callers), where curr_fn is a fully-qualified
function name, and callers = {f’ | f’ calls curr_fn} is the set of functions that call
curr_fn. To retrieve the “leaves” of the callgraph, i.e., the functions that have
no callees, we perform a topological sort on our callgraph to obtain a list of
(curr_fn, callers), ordered from the bottom of the calling hierarchy (the leaves of
the callgraph) to the top (the main function), taking care to handle cycles. We
then work our way from the leaves — the bottom of the calling hierarchy — up to
the main function.

Having constructed our callgraph call_graph, we define our set of rewrite
passes rewrite_passes (line 3). In this case, we collect only our particular array
rewrite pass, arr_pass, which we describe in further detail in algorithm 4.2.3 and
later on.

Next, for every pair of fully-qualified function name and caller set (curr_fn, callers)
in our callgraph call_graph ordered by calling hierarchy (line 4), we iterate
through our set of rewrite passes rewrite_passes (in this case we only have one!),
and perform the rewrite pass on curr_fn (line 5-6). After performing all our
rewrites on curr_fn, we want to propagate the updates that were made, so we
look up all the functions caller_fn in callers that call curr_fn, and update the call

sites to reflect the changes (line 8-9).
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4.2.2 A Rewrite Pass for Arrays: arr_pass

Algorithm 4.2.2: Rewrite pass structure

Function rewrite_pass(curr_fn):
ast « ast_of(curr_fn);
constraints « collect_constraints(ast);
solved_constraints «— chr_solve_constraints(constraints);
transformed_ast < rewrite(ast, solved_constraints);
surgery(curr_fn, transformed_ast);

Here, we describe the structure of a rewrite pass. rewrite_pass takes as input
a fully-qualified function name curr_fn (line 1). Then, we build the AST of the
function represented by curr_fn (line 2). Next, we label each node in the AST,
assign and collect constraints corresponding to the labels (line 3), and solve them
using our Prolog CHR constraint solver system (line 4), discussed in Sec. 4.3 and
in Sec. 5.3. The resulting solved constraints, together with the AST, are then
passed to a helper function rewrite that implements a particular set of rewrite
rules to transform the AST (line 5). Finally, we perform “surgery” (Sec. 5.4):
with the fully qualified fuction name, we have the absolute location of the file
containing the function, so we read in the source file containing the function,
transform the AST (Sec. 4.4), and finally, write the transformed AST back to the
file (line 6).

Observe that this structure is generic: the functionality of the pass depends
on the particular constraint system that we use, and the particular rewrite rules
that we use to transform the AST. In particular, we can instantiate the rewrite
pass, arr_pass, that was used in rewrite_passes in algorithm 4.2.1 (line 3), as

follows:

Algorithm 4.2.3: Example rewrite pass: arr_pass

Function arr_pass(curr_fn):
ast « ast_of(curr_fn);
constraints «— collect_constraints(ast, arr_pass);
solved_constraints «— chr_solve_constraints(constraints);
transformed_ast « rewrite(ast, solved_constraints, arr_pass);
surgery(curr_fn, transformed_ast);

giving us a rewrite pass that targets non-heap manipulating code that was
conservatively marked as unsafe, as well as the lifting of raw pointers to arrays.

We describe the constraint system and rewrite rules used to instantiate arr_pass
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in the following sections.

4.3 Constraint Collection

Type constraints are a formalism for expressing the subtyping relationships
between the types of program elements that must be satisfied in order to
determine whether a program is type-correct [PS94]. For our purposes, we
define a set of type constraints that are expressive enough to handle our use-
case of lifting pointers to arrays. Then, a solution to the constraint system not
only asserts that the proposed transformation preserves the program behavior,
but also indicates possible “fixes”. These “fixes”, for our purposes, reflect the
transformations for lifting pointers to arrays. Note that these type constraints
do not express the complete set of correctness constraints for any arbitrary
transformation of Rust code. Rather, they are chosen specifically to preserve the
program semantics for our subset of rewrites.

In the subsequent subsections, we will describe our constraint system for a
particular rewrite pass, arr_pass, that is an instantiation of our framework. The
constraint system for arr_pass collects and solves constraints pertaining to the

refactoring of arrays.

4.3.1 Collecting Constraints from our Motivating Example

Recall that we began by taking a well-typed, but unsafe, Rust program that
was naively translated from c2rust. Next, we construct its AST (line 2-3 in
algorithm 4.2.2), and uniquely label every node, as we have done for our

motivating example, reset, from Listing 4.1.

pub unsafe extern "C" fn reset(mut arr/*1*/: *mut libc::c_int,
mut size/*2*/: libc::c_int) {
let mut i/*3*/: libc::c_int = (0/%4*/ as libc::c_int)/*5*/;/*6%/
while (i/#7%/ < size/*8*/)/*9*/ {
(*(arr/*10*/.offset((i/*11%/ as isize)/*12%/))/*13*/)/*14%/ =
®/*15%/ as libc::c_int) /*16%*/;/*17%*/
i/%18%/ += 1/%19%/,; /*20%/
Y /F21%/
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Listing 4.4: reset labelled

Then, we collect the following type constraints, using the constraint collection
rules that we will describe later in Sec. 4.3.6
M ={arr:aq,size: ay,i: az}
L ={ag = as,a3 ~ as,a7 = ag, a7 = a3,¥3 = ag,Ag ~ a3, X1 = QA10, X3 =
a11, @14 = 16, A15 = A6, A18 = 19, A3 = 13,
Compat(ay, c_int),
Compat(arz, c_int),
Compat(as, c_int),
Compat(a11, isize),
Compat(ar15, c_int)
Deref (a13, av14),
Mut(ais),
Mut(azs),
Offset(a10, @12, @13)}-
This system of constraints is then solved to produce a solution set of type
constraints:
r =
{ag = as,a3 = as, a7 = ag, a7 ~ a3, a3 ~ ag,
ag = ap, a3 = 11, a3 = A1, A1g = A19},
{a1a = a1, 15 = a1},
{a1 = axo},
Compat(arp, c_int),
Compat(asz, c_int),
Compat(as, c_int),
Compat(a11, isize),
Compat(ays, c_int)
Mut(aa),
Mut(azs),

Index(an0, @12, 214)}.
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We abuse notation to represent the equivalence classes of ~. From this solution
set, we can query and retrieve any necessary type constraint information. Notably,
observe that the solution set has the type constraint Index(a19, @12, @14), which
was inferred from Offset(a10, a12, a13), Deref (13, a14) &= Index(a10, @12, a14).
In essence, this describes how we can deduce that the node labelled as a1y, with
index node labelled as a2 and output node labelled as a3, is in fact an Index
constraint with index node a2 and output node a14: the output node a3 is also
used as part of a constraint Deref (13, a14) which indicates that the output of the
node labelled a13 when dereferenced is the node labelled a14.

Finally, with the solved system of constraints, we have enough information to
rewrite *arr.offset(i as isize) = 0 as arr[i] = 0, and know that arr should
implement the trait T: IndexMut<usize, Output = i32>:

fn reset<T: IndexMut<usize, Output = i32>>(mut arr: &mut T, size: usize) {
let mut i: usize = 0;
while i < size {
arr[i]= 0;

i+=1

Listing 4.5: Resetting Arrays, refactored into safe Rust

Even though these constraint terms have not yet been properly introduced or
defined, this example serves to demonstrate how we give each node a unique
label, collect the constraints associated with each label, and then use the solved

system of constraints to inform our rewrites.

4.3.2 Language of Rust Types

Before we describe the syntax of our constraints, we first define a compact
representation of the language of the subset of Rust’s types that we are concerned
with, namely its primitive types and its pointer constructs

If t is a primitive Rust type or a Rust data structure,® then t is also a 75. If t is
a1, ort € TVars, or t is a raw pointer of type 7, or a reference of type 7, or a

smart pointer of type 7, then t is a 7.

Shttps://doc.rust-lang.org/reference/types.html
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prim_type | data_struct
Ty | T | Raw(t) | Ref(7) | Box(t)
Mut | Imm

(Basic Types) 1
T
(Capability) c

T € TVars

Figure 4.2: Language Syntax

Furthermore, Mut and Imm are both capabilities that reflect whether a variable

is mutable or immutable.

4.3.3 Constraint Syntax

Domain
(Constraints Store) r = Set(t)
(Label) a € NodeLabels =  GhostVars
(Label Map) M : Vars — NodeLabels

Constraints Syntax

T|a

t =t | Compat(a, 7) | Offset(a, v, @) | Deref(a, t) |
Index(a, , ) | ShouldIndex(«, o, ) | Malloc(cx, 7) |
Vec(a, a, ) | Mut(ax)

(Type Constraints Terms)  t
(Type Constraints) te

[ 1l>

Figure 4.3: Constraints Syntax

A type constraint term ¢ is either a Rust type 7 as defined in Sec. 4.3.2, or
a unique label a. A type constraint t¢ is either an unary relation, or a relation
between two or more terms. We define our constraints store X as a set containing
our type constraints t¢. As a convenient shorthand, we define —¢¢ to mean that
t¢ ¢ X. To assist in collecting constraints, we also define a map M from program

variables to labels. In this thesis, we define the following relations:

1. t; ~ t, which indicates that ¢ is equivalent to ¢,

2. Compat(a, T) which indicates that the node labelled « is compatible with the
type 7,

3. Offset(a, Aind, ®our) which indicates that offsetting the node labelled a by the

node labelled a;,,4 will retrieve as an output the node labelled a, ;.
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4. Deref(a, aoyt) which indicates that dereferencing the node labelled a will

retrieve as an output the node labelled a ;.

5. Index(a, ind, aout) which indicates that indexing the node labelled « by the

node labelled «a;,,4 will retrieve as an output the node labelled .

6. ShouldIndex(a, ating, ®oyr) which indicates that the node labelled a should be a
collection, that when indexed by the node labelled a4, will retrieve as an

output the node labelled ;.

7. Malloc(e, T) which indicates that the node with label @ has memory allocated

corresponding to the size of type 7,

8. Vec(a, aing, aout) which indicates that the node labelled « is a dynamic array,
that when indexed by the node labelled «;,4, will retrieve as an output the

node labelled a,;.

9. And finally, Mut(ar), which indicates that the node labelled « is mutable.

4.3.4 The Constraint System

Constraints System

(Offset Collapse) Offset(t1, t2, t3), Offset(t3, ta, t5)
1ty ~y,t3 = 15, Oﬁ‘set(tl, t, ts5)
(Array Reconstruction)  Offset(ty, ta, t3), Deref (t3, t4)
(——2 Index(tl, ty, t4)

(Implicit Deref) Index(t1, _, t3), Deref (t1, t4)
e i3 =1y
(Vec Reconstruction) ShouldIndex(t1, t2, t3), Malloc(t1, t3), ~Compat(ty, Raw(_))

= Vec(ty, ta, t3)
(Indexed Subsumption)  Vec(t1, ta, t3)
= Index(ty, t2, t3)
(Dereference Reference) — Deref(t1,t2), Ref(t1, t3)
& t) =13
(Indexed Collapse) Index(t1, _, t3) \ ShouldIndex(t1, _, ts)
e fy3x=iy

Figure 4.4: Constraints System

To solve our constraint system, we use the Constraint Handling Rules (CHR)

system, which is a declarative, rule-based constraint solver [Frii94; SD04]. The
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rules of our constraint system are defined above in Fig. 4.4, and are written in
the syntax of CHR rules.*

There are three types of rules in CHR, each with their own semantics. Firstly,
the simplification: LHS &= RHS rule, given a constraints store X, removes the
constraints in the head (LHS) from X and adds the constraints in the body (RHS)
to X. Secondly, the simpagation: LHS \ LHS” &= RHS rule, given a constraints
store L, removes the constraints in the head after the \, i.e., LHS’, from the £ and
adds the constraints in the body (RHS) to X. Finally, the propagation: LHS =
RHS rule, given a constraints store X, adds the constraints in the body (RHS) to
L exactly once for the constraints in the head (LHS).

For this thesis, we have defined seven rules so that the solved constraint
system can inform the lifting of raw pointers to arrays, and these rules generalize

to n-dimensional arrays.

e Offset Collapse. This rule states that, given the constraints Offset(t1, t2, t3),
Offset(t3, ta, t5), remove them from X and add in the constraints f, = ty, f3 ~
ts, Offset(t1, t2, t5). The Offset Collapse rule reflects the transitive closure of
Offset and reduces the occurences of Offset in our constraint store by collapsing

two Offsets together.

e Array Reconstruction. Thisrule states that, given the constraints Offset(t1, t2, t3),
Deref (t3,t4), remove them from X and add in the constraints Index(t1, t2, t4).
The Array Reconstruction rule reflects that we can deduce that if the output
t3 (from when t; is offset by t;) can be dereferenced to produce 4, then it must

be that t1 is an array that can be indexed by ¢, to produce t4.

e Implicit Deref. This rule states that, given the constraints Index(t1, t2, t3),
Deref(t1,t4), remove them from L and add in the constraint f3 =~ t4. The
Implicit Deref rule reflects that if dereferencing an array t; produces t4, then

it must be the case that indexing that array should also produce t4.

e VecReconstruction. This rule states that, given the constraints ShouldIndex(t1, t2, t3),
Malloc(ty, t3), ~Compat(t1, Raw(y), remove them from ¥ and add in the con-

straint Vec(t1, f, t3). The Vec Reconstruction rule reflects that, if t; should

4https://www.swi-prolog.org/pldoc/man?section=chr-syntaxandsemantics
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be a collection that can be indexed by t,, and t; has memory allocated to it
corresponding to the size of t3, and t; is not compatible with a raw pointer type,
then we can deduce that it is a dynamic array (vector) indexed by ¢, and with

an output of t3.

e Indexed Subsumption. This rule states that, given the constraint Vec(t1, to, £3),
we can add in the constraint Index(t1, t, t3). The Indexed Subsumption rule

reflects that vectors in Rust implement the Index trait.

o Dereference Reference. This rule states that, given the constraints Deref (t1, t2)
and Ref(t1, t3), remove them from X and add in the constraint t, =~ f3. The
Dereference Reference rule reflects that, if £; is a reference to t3, and derefer-

encing t; returns t,, then it must be that t, and t3 are equivalent.

e Indexed Collapse. This rule states that, given the constraints Index(t1, _, t3)
and ShouldIndex(t1, _, t4), remove ShouldIndex(t1, _, t4) from L and add in the
constraint f3 =~ t4. The Indexed Collapse rule reflects that, if t; can be indexed
into to retrieve an output t3, but one should also be able to index into t; to

retrieve some other output t4, then it must be that f3 and ¢4 are equivalent.

We present the operational semantics of CHR informally. The CHR constraint
solver iterates over every constraint in the constraint store X.. Then, the CHR
solver tries to apply rules in sequential order. If the current constraint matches
the head of a rule, then the remaining constraints are searched for in X. If
all the constraints in the head are matched, then the rule is executed. If the
current constraint does not match the head of any rule, then it is suspended. This
process ends when all constraints have been iterated through, and the final set of

constraints is considered as the solved constraint system.

4.3.5 Solver as Oracle

We use the solved system of constraints as an oracle to answer queries pertaining
to a particular labelled AST node in the program. The rules for querying the
solved system of constraints are provided in Fig. 4.5. We provide two ways to
query the oracle. Firstly,

Yk t€
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s-BAseTyPE

Traxt ¢ = mut(a, L)
Ytra1,0,{},Z

Imm X ¥ Mut(a)
Mut X+ Mut(a)

s-DErFAULT

TFa=x=T L+ Compat(ar, T) ¢ =mut(a, L)
):' '_[X T/ C/ {}/Z

mut(a,X) = {

s-INDEXED

Y+ Index(a, atjpg, o) L ta, To,Imm, Gy, Zo X, ¥ Compat(a, _) fresh T
G’ = {T : Index(usize, Output = 7o)} U G, Y/ = {Compat(e, T)} UL, c=mut(a,L’)

Ytro T,c, G, Y

s-INDEXEDMuUT

X+ Index(ar, ajng, @o) L ta, To,Mut, Gy, Lo Yo ¥ Compat(a, ) fresh T
G’ = {T : IndexMut(usize, Output = 7o)} U G, Y = {Compat(a, T)} U L, c =mut(a,X’)

Yrq T,c,G Y

Figure 4.5: Rules for Querying the Solver as an Oracle

reads as "the constraint t¢ can be deduced from the given set of constraints X".
Secondly,
Lty 1,0G Y

reads as “given a set of constraints © and a label «, the solver deduces that «
maps to a type T with capability ¢, and in the solving process it generates a set
of traits G and updated set of constraints X’. We will use the notation Z +, 7,c

when G is empty, and © = Y.

4.3.6 Collecting the Constraints

Now, we discuss how we collect the constraints from our program to construct
our system of constraints. Recall our motivating example:

pub unsafe extern "C" fn reset(mut arr: *mut libc::c_int,
mut size: libc::c_int) {
let mut i: libc::c_int = 0 as libc::c_int;
while i < size {
*arr.offset(i as isize) = 0 as libc::c_int;
i+=1

1

Listing 4.6: Motivating Example: Resetting Arrays
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We constructed the AST of this program, and gave every node in the AST a

unique label:

pub unsafe extern "C" fn reset(mut arr/*1*/: *mut libc::c_int,
mut size/*2%/: libc::c_int) {
let mut i/*3*/: libc::c_int = (0/%4*/ as libc::c_int)/*5*/;/*6%/
while (i/*7*/ < size/*8*/)/*9%/ {
(*(arr/*10%/.offset((i/*11%/ as isize)/*12%/))/*13%/)/*14%/ =
(0/%15%/ as libc::c_int)/*16%/;/*17%/
i/*18%/ += 1/%19%/;  /*20%/
Y /F21%/

Listing 4.7: reset labelled

We present a selected set of constraint collection rules in Fig. 4.6. While we
have omitted some of the rules for brevity, the entire Zoo of constraint collection
rules, separated into general and array-related constraint collection rules, can be

found at Appendix A.

1. Firstly, c-FUN constructs our label map M by iterating through every argument
in the function declaration, giving each parameter a unique label, and then
mapping each parameter to its unique label. This gives us M = {arr :

a1,size: ay,i: as}.

2. Secondly, c-SEQ iterates through each statement in the program, collects the
constraints in each statement, and returns the set of collected constraints.
This is essentially the “workhorse” that propagates the collection of rules.
Different expressions are then handled by pattern-matching on what type
of expressions they are: for instance, in our example, while i < size would
invoke the constraint collection rule for while statements, which in turn
invokes the constraint collection rule for binary operations, which returns that

the label of i is equivalent to the label of size.

3. Next, the c-ASSIGNMENT rule targets statements of the form e; := e;. We not
only collect the constraints corresponding to the labels of e; and e, but also
observe that, because e; is being assigned to, it must be mutable. Hence, we

also add the constraint that the label of e; is Mut.
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c-Fun

n n
a = label(e) a; = label(vi),i € 1..n M = U{v,- tog} C= U{Compat(a,-,’[i)}
i=1 i=1

Y(fn fname(vy : T1,..,Vn : Tn) — Toutie},[]) = (e, M)U C

ap = label(ey) a = label(ey; e3)
L(er;ez, M) = {a = ar} UX(e1, M) U L(e2, M)

C-ASSIGNMENT

a1 = label(eq) ap = label(ey)
Z‘(el = eZ/M) S {(11 = aZ/Mut(al)} U Z‘(()]/M) U 2(02/M)

a = label(e;.offset(ey))

aq = label(eq) ayp = label(ey) t] == Offset(a1, a2, a) t5 := Compat(az, usize)
Y(ej.offset(ez), M) = {t],t5} UX(e1, M) U X(e2, M)

c-DEREF

a = label(xe) a’ = label(e)
Y(+e, M) £ {Deref(a’, @)} U L(e, M)

c-MaLLoc

a = label(malloc(N - sizeof(1))) Y =Y(e, M)
Y(malloc(N - sizeof(1)), M) £ {Malloc(a, )} U {Compat(a, 7)} UL

a = label(e) Y =X(e, M) U X(1out, M) a’ = M(e)

Y(IndexMutlrapper(e, Tind, Tout), M) = {ShouldIndex(at, Ting, Tout), @ = &’} UL’

Figure 4.6: A Selection of Constraint Collection Rules

We also want to collect constraint information for pointers that can be lifted

to arrays. Hence, when considering statements of the form *arr.offset(i),

which is how c2rust syntactically translates arrays in C to unsafe Rust, we first

invoke c-INDEXED to capture that arr.offset (i) indicates that arr, when offset

by i, returns arr.offset(i). Then, we invoke c-DEREF to collect the constraint

that the expression arr.offset(i) dereferences to *arr.offset(i). These two

constraints, Offset(a10, @12, @13), Deref (a13, a14), will be targeted by the Array

Reconstruction rule in Fig. 4.4 to produce Index(t1, t, t4), which indicates that

*arr.offset(i) can be refactored as indexing an array in safe Rust, i.e., arr[i].

The above constraint collection rules provides enough information to refactor

the indexing of arrays, but we want to also handle the allocation of arrays.
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Consider the following extension of our motivating example, where we have

some parent function that allocates arrays and calls reset on them.

unsafe fn main_0() -> libc::c_int {
let mut N: libc::c_int = 3 as libc::c_int;
/* static array allocation */
let mut static_arr: [libc::c_int; 3] =
[1 as libc::c_int, 2 as libc::c_int, 3 as libc::c_int];
reset(static_arr.as_mut_ptr(), N);
/% dynamic array allocation */
let mut dyn_arr /*1*/: *mut libc::c_int =
malloc((N/*2%/ as libc::c_ulong)/*3*/.wrapping_mul (
(::std::mem::size_of::<libc::c_int>(Q/*4*/
as libc::c_ulong) /*5*/)/*6%/)/*7*/ as *mut libc::c_int/*8%/;
reset (IndexMutWrapper (dyn_arr, usize, libc::c_int)/*9%/, N);
free(dyn_arr as *mut libc::c_void);

return 0 as libc::c_int;

Listing 4.8: Dynamic Array Allocation

In the example above, we have only labelled the section of the code pertaining

to dynamic array allocation for brevity. In line 12, we have

reset (IndexMutWrapper (dyn_arr, usize, libc::c_int)/*9%/, N);

This is because the example is a caller of reset; hence, after performing a rewrite
pass on reset, we update the call sites of reset with our update_callsite pass
(algorithm 4.2.1). As we will describe later in Sec. 4.4.2, we will be able to infer
when an array is dynamic or static. If it is dynamic, then in the call site, we
wrap the array in a wrapper (in this case, IndexMutWrapper) to pass along the
information to subsequent passes that the array should be treated as such.

If the array is statically declared, i.e., int static_arr[] = {1,2,3}in C, then
c2rust performs a direct syntactic translation into the idiomatic static declaration
of an array in Rust. Thus, we only need to handle the case where an array
is dynamically declared, i.e., it is allocated some memory via malloc. This is

handled by the c-MALLOC and c-VEC rules:
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unsafe fn main_0() -> libc::c_int {
/% dynamic array allocation */
let mut dyn_arr /*1*/: *mut libc::c_int =
malloc((N/*2%/ as libc::c_ulong)/*3%/.wrapping_mul (
(::std::mem::size_of::<libc::c_int>(Q/*4*/
as libc::c_ulong)/*5%/) /*6*/)/*7%/ as *mut libc::c_int/*8%/;
reset (IndexMutWrapper (dyn_arr, usize, libc::c_int)/*9%/, N);

Listing 4.9: Dynamic Array Allocation

fn main_0() -> libc::c_int {
/* dynamic array allocation */

let mut dyn_arr = vec![Default::default(); N.try_into().unwrap()];
reset (&mut dyn_arr, N);

Listing 4.10: Dynamic Array Allocation, refactored into safe Rust

1. The c-VEC rule targets occurences of the form IndexMutWrapper(e, Tind, Tout)-
Since we define a specific wrapper so that subsequent passes can pick up that
an expression has a type that implements the IndexedMut trait, we add the
constraint that the expression e should be a type that implements the IndexedMut
trait. That is, in subsequent passes, it should be refactored into a dynamic

array. So, we add to L the constraint that ShouldIndex(c1,usize, c_int).

2. Then, the c-MALLOC rule picks up that line 9-11 is a malloc call of the form
malloc(N - sizeof(7)), so it adds to X the constraint that Malloc(ay, c_int)

and Compat(ay, c_int).

3. Finally, the CHR solver will first observe that a1 ~ a7 by the c-LET and c-CAST
rule. Then, it will apply the Vec Reconstruction rule on ShouldIndex(aq, usize, c_int),
Malloc(ar1, c_int) and the fact that ~Compat(a;, Raw(_)) to obtain the con-

straint that Vec(a1, usize, c_int).

With the solved system of constraints informing us that Vec(a, usize, c_int),
this indicates that we are able to refactor Listing 4.9 into Listing 4.10, as we shall

see in the next section.
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4.4 Rewrite Rules

In this section, we will discuss the rewrite rules for arr_pass in algorithm 4.2.3
as well as for update_callsite in algorithm 4.2.1. To reiterate, our motivation
is to target unsafety in code that is conservatively labelled unsafe by c2rust, as
well as to perform an idiomatic refactoring of a subset of raw pointers that were
intended to be used as arrays.

Again, consider our motivating example. We had previously labelled the

AST of the code, collected the constraints, and solved the system of constraints.

pub unsafe extern "C" fn reset(mut arr/*1*/: *mut libc::c_int,
mut size/*2%*/: libc::c_int) {
let mut i/%3%/: libc::c_int = (8/%4%/ as libc::c_int)/*5%/;/*6%/
while (i/*7*/ < size/*8*/)/*9%*/ {
(*(arr/*10%/.offset ((i/*11%/ as isize)/*12%/))/*13%/)/*14%/ =
(0/%15%/ as libc::c_int)/*16%/;/*17%/
i/%18%/ += 1/*19%/;  /*20%/
Y; /r21e/

Listing 4.11: reset labelled

The solved system of constraints gives us the following solution set: X" = {
{as = as,a3 ~ a5, a7 =~ ag, a7 = a3, a3 = ag,
ag = a, A3 = 11, A3 = 18, 18 = A19}),

{1 = a1, 15 = ar6},
{a1 = aro},
Compat(ay, c_int),
Compat(az, c_int),
Compat(as, c_int),
Compat(a11, isize),
Compat(ais, c_int)
Mut(as),

Mut(ais),

Index(a10, 12, a14)}-
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a; = label(vy) L kg, T, ¢, Gi, Lifori € 1.n ' =UL,5;

a = label(e) Yo, d,GL T G=U",GudG Y”; unsafe{e} — ¢’

Y; unsafe fn fname(cy Vi :T1,..,0n Vn:Tn) — ¢ T {e} —
fn fname(G)(c} v1 : 7], .., cp va 1 1g) = ¢ T {e}

Y; unsafe{ei} — e/1 L; unsafe{ey} — e'z

¥, unsafe{e;; e} — ef;e)

U-ARRAYINDEX

Y + Index(label(ey), _, ) ¥, unsafe{e;} — €] Y, unsafe{e;} — €

L, unsafe{+e;.offset(ez)} — e}[e)]

Figure 4.7: A Selection of Rewrite Rules for arr_pass

4.4.1 Rewrite Rules for arr_pass

We present a selection of rewrite rules in Fig. 4.7 to describe the rewrite of our
motivating example, reset. The general rewrite rule for instructions is as follows:
P;Y, e > e
and it reads as “given the global environment of the program ¥, (the AST of)
expression e is transformed into (the AST corresponding to) program e’, in the
presence of type constraints X ". For brevity, however, we will not explicitly state
% in the rules, but will assume that it always exists. The entire Zoo of rewrite
rules, separated into general and array-related transformation rules, for arr_pass

can be found in Appendix B.
Firstly, we begin by applying the u-FUN rule. The u-FUN rule targets an unsafe

function declaration and performs two actions:

1. It pushes unsafe function declaration inwards, so that instead of the function

being labelled unsafe, it is the body of the function that is labelled unsafe.

2. It updates the function signature using the information from the collected
constraints. Besides updating the parameters and their types in the function
signature, if the solved system of constraints can infer the presence of an array,
then we include the trait IndexMut or Index into the trait bound of the function
as such: TO® : IndexMut < 7;,0utput = 7, >, where T0 is fresh. The function

parameters which use these traits are then updated to have the type T0.
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This gives us the following program code:

fn reset<TO: IndexMut<usize, Output = c_int>>(mut arr: &mut TO,
mut size: c_int) {
unsafe {
let mut i: libc::c_int = 0 as libc::c_int;
while i < size {
*arr.offset(i as isize) = ® as libc::c_int;
i+=1

};

Listing 4.12: reset after u-FUN

Observe that the function signature has been rewritten to reflect that arr is a
mutable reference to T9, which in turn implements the trait IndexMut<usize, Output = c_int>.
Furthermore, the function is no longer conservatively marked as unsafe — instead,
the unsafety has been bubbled inwards to the body of the function!
Now we know, from Rust’s provenance of unsafety (Sec. 2.1.3), that the
remaining statements are safe with the exception of line 6. By applying the other
rules in Appendix B that traverse the different types of expressions in conjunction
with u-SEQ, we can further remove every unsafe block with the exception of the

raw pointer dereference in line 6:
unsafe { *arr.offset(i as isize) } = 0 as libc::c_int;

Here, u-ARRAYINDEX comes into play — given unsafe{+e;.offset(e;)}, if our
solved system of constraints indicate that e; isin factan array, i.e., Index(label(e1), _, _),
and e; and e; are both expressions that can be rewritten into safe expressions
e}, e}, then we can rewrite the dereference operation and offset method call
on arr as simply an array indexing (which is safe), giving us e)[e,]. Since
label(arr) = aqp, and L’ indeed indicates that Index(a1g, @12, ®14), Wwe can com-

plete the rewrite of our motivating example:

fn reset<TO: IndexMut<usize, Output = c_int>>(mut arr: &mut TO,
mut size: c_int) {

let mut i: libc::c_int = 0 as libc::c_int;
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while i < size {
arr[i as usize] = 0 as libc::c_int;
i+=1

};

Listing 4.13: reset after arr_pass

Observe that the final code has no unsafe code blocks — we have successfully
removed the conservative unsafe annotations! The key to this was first to observe
that the function was conservatively labelled unsafe, and so if the function body
was in fact safe, we could rewrite the entire function as safe. Secondly, while it is
unsafe to dereference a pointer, if we can deduce that the raw pointer is intended
to be used as an array, then the raw pointer dereference should not be unsafe,
since the semantics of the dereference (wWhen used in conjunction with an offset)

is to index the array, which is safe.

4.4.2 Updating Call Sites

Having rewritten reset, we now want to update all of the functions that call
it. Let’s take a look at our parent function main from before, when we collected

constraints for dynamic array allocation:

unsafe fn main_0() -> libc::c_int {
let mut N: libc::c_int = 3 as libc::c_int;
/% static array allocation */
let mut static_arr: [libc::c_int; 3] =
[1 as libc::c_int, 2 as libc::c_int, 3 as libc::c_int];
reset(static_arr.as_mut_ptr(), N);
/% dynamic array allocation */
let mut dyn_arr /#1*/: *mut libc::c_int =
malloc((N/*2%/ as libc::c_ulong)/*3*/.wrapping_mul(
(::std::mem::size_of::<libc::c_int>(Q)/*4*/
as libc::c_ulong)/*5*/)/*6%/)/*7*/ as *mut libc::c_int/*8%/;
reset(dyn_arr /*9%/, N);
free(dyn_arr as *mut libc::c_void);

return 0 as libc::c_int;
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u-UPDATEVEC

type(e) = Raw(t) type(p) = T : IndexMut(7y, Output = T)

L; (e, p) » IndexMutlWrapper(e,usize, 1)

‘ U-UPDATESTATICARRMUT ‘
type(e) = Mut Array(t) type(p) = T : IndexMut(t, Output = 1)

Y; (e.as_mut_ptr(), p) > Mut Ref e

‘ U-UPDATESTATICARRIMM ‘

type(e) = Array(t) type(p) = T : Index(7y, Output = 7)

Y; (e.as_mut_ptr(), p) w> Ref e

’ U-UPDATECALLSITE ‘

fname = callname fn callname(py, ..., Pn) Y (ei, pi) w €l

L, fname(ey, .., en) —  fname(e],.. ep)
callname

Figure 4.8: Rewrite Rules for Updating Call Sites

The rewrite rules for updating call sites are presented in Fig. 4.8. Before we
begin updating the call sites, we require the aid of an oracle that can provide
us with the type of a variable in the program environment. A query to this
oracle is represented as type(e), and returns a Rust type 7. In practice, this is
implemented as the local type context of the caller function that we are about to
update.

Inmain, there are two calls to reset that we want to update. The u-UPDATECALLSITE
rule (cal - me) is parameterized by the name of the callee, in this case reset. Then,
when it fires, it ensures that the call site’s function name matches the callee’s
name. If the names match, then it zips the parameters ey, ..., e, of the call
site function and the parameters py, ..., pn of the callee function, and iterates
over the pair (ej, p;i), applying one of u-UPDATEVEC, u-UPDATESTATICARRMUT, or
u-UPDATESTATICARRIMM. This is represented by the ~» symbol in the premise of
u-UPDATECALLSITE (X; (e, p;) »» €}).

The u-UPDATECALLSITE rule first applies to the application of reset on our

statically declared array (line 6):

reset(static_arr.as_mut_ptr(), N);

To begin, we observe that a mutable pointer to static_arr is being passed
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to reset, in keeping with reset’s function signature. This is because c2rust
explicitly casts idiomatic uses of arrays in C to a decayed raw pointer in unsafe
Rust. As we keep track of the local type context, our oracle returns that
type(e) = Mut Array(c_int). Since the type signature for the first parameter, arr,
in reset is &mut T® where TO is bound as T0: IndexMut<usize, Output = c_int>,
the u-UPDATESTATICARRMUT rule fires and returns Mut Ref e to u-UPDATECALLSITE,
which performs the rewrite at the call site to update the first parameter of reset

in line 6 from static_arr.as_mut_ptr() to &mut static_arr. This gives us:

reset (&mut static_arr, N);

Then, the u-UPDATECALLSITE rule applies to the application of reset on our

dynamically declared array (line 12):

reset(dyn_arr, N);

Since dyn_arr is initialized as a mutable pointer via memory allocation on
line 9, it is being passed directly to the reset call. Our oracle returns that
type(e) = Raw(c_int), and since the type signature for the first parameter, arr,
in reset is &mut TO® where T0 is bound as T0: IndexMut<usize, Output = c_int>,
the u-UPDATEVEC rule fires and returns IndexMutWrapper (dyn_arr, usize, c_int)
to u-UPDATECALLSITE.

IndexMutWrapper(dyn_arr, usize, c_int) is a wrapper which encapsulates
information about dyn_arr, so that on the subsequent arr_pass on main, the con-
straint collector can gather that dyn_arr should be implementing the IndexMut trait
(see: item 1 describing the c-VEC constraint collection rule). Then, u-UPDATECALLSITE
performs the rewrite at the call site to update the first parameter of reset in line

12 from dyn_arr to IndexMutWrapper(dyn_arr, usize, c_int), giving us:

reset (IndexMutWrapper (dyn_arr, usize, c_int), N);
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4.4.3 Rewriting After Call Site Update

To complete the code transformation, it remains to rewrite main after updating
the call sites:

unsafe fn main_0() -> libc::c_int {
let mut N: libc::c_int = 3 as libc::c_int;
/% static array allocation */
let mut static_arr: [libc::c_int; 3] =
[1 as libc::c_int, 2 as libc::c_int, 3 as libc::c_int];
reset(&mut static_arr, N);
/% dynamic array allocation */
let mut dyn_arr: *mut libc::c_int =
malloc((N as libc::c_ulong) .wrapping_mul (
(::std::mem::size_of::<libc::c_int>(Q)
as libc::c_ulong))) as *mut libc::c_int;
reset (IndexMutWrapper(dyn_arr, usize, cint), N);
free(dyn_arr as *mut libc::c_void);

return 0 as libc::c_int;

Listing 4.14: Dynamic Array Allocation, Call Sites Updated

We will focus on our selected rewrite rules in Fig. 4.9 that specifically target
dynamically declared arrays. Again, the complete set of rules can be found in
Appendix B.

As we did before in Sec. 4.4.1, we begin by applying the u-FUN rule to push
the unsafe function declaration inwards to the body of the function. Then, via
Rust’s provenance of unsafety (Sec. 2.1.3), we can traverse the statements with
u-SEQ and remove unsafety from expressions that are conservatively marked as
unsafe. We focus on lines 8-13 in particular, since they perform the allocation,
use, and deallocation of the dynamically allocated array.

Firstly, dyn_arr is allocated on the heap with the C malloc function (lines
8-11). In Rust, the idiomatic way to dynamically allocate an array is to use
the vec! ) macro. Thus, our aim here is to rewrite the lengthy malloc call
that was automatically translated by c2rust into a use of the vec! () macro.

This is handled by the u-VECMALLOC rule in Fig. 4.9, which targets expressions
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U-VECWRAPPER

a = label(IndexMutWrapper(e, Tind, Tout)) Z + Index(e, _, Tout)

Y, IndexMutWrapper(e, Tind, Tout) — Mut Ref e

a = label(malloc(N - sizeof(1)))

T+ Vec(a, aing, dout) X + Malloc(at, _) b Qout = Tout T = Tout

%; unsafe {malloc(N - sizeof(7))} — vec![Tout;N]

U-VECFREE

a = label(e) Y+ Vecla,_, ) X + Malloc(ar, )

Y; unsafe {free(e as *mut 7)} — ()

Figure 4.9: Rewrite Rules for Dynamic Arrays

of the form malloc(N - sizeof(e)). If our solved system of constraints, given
the label a of malloc(N - sizeof(e)), indicate that Vec(a, aing, dour) € X and
Malloc(ar, 7) € L, and that the type of @, matches 7, then we know that we can
rewrite malloc(N - sizeof(e)) into vec![Toyut; N]. This is because our constraint
system informs us that dyn_arr is being used as a dynamic array, and has also
been allocated memory. Thus, we know that it is semantics-preserving to use
the Rust macro vec! () to dynamically allocate memory for dyn_arr, and we can
rewrite

let mut dyn_arr: *mut libc::c_int =

malloc((N as libc::c_ulong) .wrapping_mul (

(::std::mem::size_of::<libc::c_int>()

as libc::c_ulong))) as *mut libc::c_int;
into

let mut dyn_arr: *mut libc::c_int = vec![Default::default(); N.try_into().unwrap()];

Then, the u-LET rule transforms the type signature in the declaration of dyn_arr
to give us

let mut dyn_arr: Vec<c_int> = vec![Default::default(); N.try_into().unwrap()];

Next, we want to get rid of the wrapper in line 12 that was constructed in
the call site update pass to propagate information that dyn_arr implements the
IndexMut trait to the constraint collector. This is handled by u-VECWRAPPER, which
simply checks that we have successfully collected this information, and then

removes the wrapper, returning just &mut dyn_arr. Observe that, if in fact dyn_arr
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were determined to not be compatible with an Index trait, then it must be a raw
pointer by the premise of u-UPDATEVEC. In this case, we do not remove the wrapper.
However, this is still valid, compilable Rust code: we just have to ensure that the
implementation of IndexMutWrapper returns an array when given a pointer. This
scenario is fairly common, and highlights the gradual, iterative “hill-climbing”
nature of CHRusty wherein intermediate rewrites should preserve compilability
— suppose a function f takes in an array, and another function g calls £ with a
variable x that may have found use as a pointer after f is called.

Finally, consider line 13:

free(dyn_arr as *mut libc::c_void);

Since Rust automatically frees memory for us, the deallocation of the raw pointer
using C’s free is unnecessary, and the u-VECFREE rule handles it by removing the
line of code, ensuring that the expression has been determined by the constraints
to be a dynamically allocated array.

With all these changes, the code transformation for main is complete, and
we can now present the fully-transformed, safer, and more idiomatic, reset and
main together:

1 fn reset<TO®: IndexMut<usize, Output = c_int>>(arr: &mut TO, size: c_int) {

S}

2 let mut i: libc::c_int = 0 as c_int;

3 while i < size {

4 arr[i as usize] = 0 as c_int;
5 i+=1

6 }

7 }

8 fn main_0() -> libc::c_int {

9 let mut N: libc::c_int = 3 as c_int;

10 let mut static_arr: [libc::c_int; 3] = [1 as c_int, 2 as c_int, 3 as c_int];
11 reset(&mut static_arr, N);

12 let mut dyn_arr = vec![Default::default(); N.try_into().unwrap()];

3 reset(&mut dyn_arr, N);

14 return 0 as c_int;

Listing 4.15: Transformed Code
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4.5 Discussion

This concludes the program rephrasing and refactoring algorithm as part of the
pipeline from C code to safer and more idiomatic Rust code.

In this chapter, we have presented a generic framework for automated
translation of C code to safer Rust (Sec. 4.1, Sec. 4.2), working through reset and
its caller main as a motivating example. In particular, we focused on the problem
of lifting raw pointers to arrays: c2rust, during their syntactic translation of C to
unsafe Rust, naively translates code that was intended to be used as arrays into
raw pointers. By using a constraint collector, the solved system of constraints
can indicate whether a raw pointer was actually intended to be used as an array
(Sec. 4.3). Then, our rewrite system uses information from the solved constraints
to perform these rewrites (Sec. 4.4). In the process, conservative unsafe blocks
are removed, and the subset of raw pointers intended to be used as arrays are

refactored to Rust idioms.
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Implementation of CHRusty

In this chapter, we detail several aspects of CHRusty, which implements the
array-refactoring instantiation of our framework, arr_pass. We implemented
CHRusrty as described in Ch. 4 in around 7, 000 LOC of Rust, with the exception of
the CHR system, which was written in Prolog. A snapshot of the implementation
of CHRusrty is available as an artifact! for this thesis, but on the whole is still

undergoing development.

5.1 Working with Rust’s AST and IR

Rust exposes several source code representations. Those that are easily available
are the AST of the source code [KN22a], a high-level intermediate representa-
tion called HIR [KN22b], and the mid-level intermediate representation called
MIR [KN22c]. There is also a typed high-level intermediate representation
called THIR, but it is mostly for the purposes of constructing the MIR. For more

information, one can refer to the official Rust compiler guide [KN22d].

5.1.1 HIR

The high-level intermediate representation (HIR) used by the Rust compiler is
a compiler-friendly representation of the AST generated after parsing, macro
expansion, and name resolution [KN22b].

Many aspects of HIR resemble Rust language syntax closely, except that some
expressions have been desugared. For instance, for-loops are eliminated, and

are instead represented using the loop construct.

lhttps://zenodo.org/record/6334872
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Where HIR abides by the same structure as the original source code, the mid-level
intermediate representation (MIR) is based on a control-flow graph, and more
closely resembles LLVM IR. MIR is intended to reduce Rust down to a simple
core language, removing most of the Rust syntax by converting them to a small

set of primitives [Mat16].

5.1.3 Our IR of Choice: The syn crate

For our purposes, however, the above source code representations are not
amenable to both the analysis pass and the refactoring. This is because our
constraint collection and rewrite pass occurs at the level of the AST of the
program. The exception to this is when we use the HIR to more easily collect the
calling relationships for our call graph generation.

The syn? crate is a parsing library for parsing a stream of Rust tokens into a

syntax tree of Rust source code. The two pertinent features that it provides are
1. A complete syntax tree for representing any valid Rust source code, and
2. Syntax tree traversal to transform the nodes®.

These features enable us to collect constraints, as well as perform the refactoring,
using a single representation. Recall our rewrite pass structure, which we present

here again for easy reference:

Algorithm 5.1.1: Rewrite pass structure

Function rewrite_pass(curr_fn):
ast < ast_of(curr_fn);
constraints « collect_constraints(ast);
solved_constraints <« chr_solve_constraints(constraints);
transformed_ast < rewrite(ast, solved_constraints);
surgery(curr_fn, transformed_ast);

In line 2, we use syn to generate our AST. We can then traverse the AST
in line 3 to collect constraints, pass them to our CHR solver to solve them,

and then perform the rewrites directly to the AST in line 5. Finally, we write

2https://crates.io/crates/syn
Shttps://docs.rs/syn/1.0.86/syn/fold/index.html
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the transformed AST back to the file in line 6. But this describes the process
for refactoring an individual function. What then, is the entry point for our

algorithm to operate on?

5.2 Generating Callgraphs

We leverage the power of the Rust compiler to provide us with information about
all the functions that we need to operate on. When we generate our call graph
in the main algorithm (algorithm 4.2.1), we pass the algorithm either a main.rs
or lib.rs file, depending on whether the program is a single-file program, or a
large project spanning across multiple files.

This file is passed to build_callgraph, which runs the Rust compiler on
it, with the provision that we perform some additional analysis relevant to
generating the callgraph at the HIR/MIR linting phase, which runs just before
the translation to LLVM IR. Since generating callgraphs using static analysis is
undecidable (reachability analysis is undecidable), our callgraph is in fact an
overapproximation of the actual program callgraph, though the precision of the
callgraph (when it is an overapproximation) does not affect our analysis.

Because themain.rs or 1ib.rs file that we pass to this analysis contains all the
necessary information regarding the functions that are used in the program, our
callgraph analysis first operates on the level of the function representation in HIR
before coverting it into a fully-qualified function name, which is an unambiguous
function name that specifies the absolute path of the file where the function
resides.

Thus, the final output of our callgraph analysis is a list of functions and
their callers, ordered from the bottom of the calling hierarchy to the top (the
main function) via a topological sort. We eliminate any self-referential calls by
ignoring cycles. Since each such function has a fully-qualified name, when we
pass the function to the rewrite pass function algorithm 5.1.1, it knows exactly

where to retrieve the source code from.
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5.3 CHR system

As discussed in Sec. 4.1.2, our constraint solver of choice is the Constraint
Handling Rules (CHR) system, which is a declarative, rule-based constraint
solver. The particular implementation of the CHR system that we use is the Prolog
implementation of the K.U.Leuven CHR system [Frii94; SD04], implemented as

a library in Prolog.*

5.3.1 Interfacing with CHR

The details of our constraints (Sec. 4.3.3), how we collect them (Appendix A),
and the rules we apply to them (Sec. 4.3.4), have all been documented extensively
previously. Here, we discuss the engineering behind how our implementation
interfaces with the CHR system.

When we collect constraints, we begin by traversing the AST obtained from the
syn crate (Sec. 5.1.3) and storing the constraints in our own internal representation.
Then, to pass it to the CHR system, we translate the internal representation
into the Prolog CHR syntax. CHRustY then spawns a child process to run the
CHR system, pipes our collected constraint to it, retrieves the output from the
solver, and parses it back into our internal representation. Finally, to represent
“equality”, or the ~ relation, we use a union-find data structure to allow for easy

access to the equivalence classes of labels.

5.4 Surgery

The final step of our rewrite pass is to perform “surgery”: with the absolute
path of the function, we write the transformed AST back to the file (line 6 in
algorithm 5.1.1) that the function belongs to.

Once every function has been re-written, and the files written to, we complete
the “surgery” of the code by resolving all the necessary imports. For instance, if
we had to bound a function that uses raw pointers as arrays during our refactoring

with the IndexMut trait, then we have to import the std: :ops: : IndexMut trait from

4Available at https://www.swi-prolog.org/man/chr.html
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the standard library. Furthermore, in the u-VECMALLOC rule (Appendix B), when
we rewrite a use of malloc(N - sizeof(7)) as vec![Tout; N] where 7., = T, as
a convenient shorthand we leverage Rust’s Default trait for giving a type a
useful default value instead of coming up with a default value ourselves for
every Rust type. The reason for this is, when we initialize an array, we don’t
really want to be bogged down by the choice of initial element, and selecting
an arbitrary initial element might affect program behavior. Thus, we import
the std: :default::Default trait to use the Default::default() value for every

primitive type.
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Evaluation and Case Studies

In this chapter, we explore two case studies: 1. allocating a matrix, and 2.
implementing Quicksort. We demonstrate how our framework transforms the
initial C program into unsafe Rust code using c2rust, and then how CHRusty
refactors the unsafe Rust code into safer and more idiomatic Rust code. Finally,
we run a randomized testing suite to validate that the behavior of the refactored
code matches that of the original code in C.!

Again, our implementation of CHRusry is available as an artifact?, and the

case studies here can be accessed, and ran, via the artifact.

6.1 Multi-dimensional Arrays

We demonstrate how our framework for lifting raw pointers to arrays scales to

n-dimensional arrays.

6.1.1 Original C Program

Consider the following program, written in C, that allocates memory for a N x M
matrix, and sets every value in the matrix to 0. We have omitted static arrays for
brevity in the code.
| void resetMatrix(int = arr, int N, int M){
2 int i, j;

int * mat = arr;

4 for (i = 0; i < N; i+ +) {

for (j = 0; j < M; j+ +) {

1We envision more robust testing by interfacing with c2rust’s cross-checking system (Sec. 7.3.1)
in the future.
2https://zenodo.org/record/6334872
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6 *(*(mat + i) + j) = 0;

11 int main() {

12 int N = 3, M = 2;

13 /* dynamic matrix allocation */

14 int * dynamic_matrix = (int =% ) malloc(N * sizeof(int *));
15 for (int 1 = 0; i < N; i+ +) {

16 dynamic_matrix[i] = (int *) malloc(M * sizeof(int));

17 }

18 resetMatrix((int * )dynamic_matrix, N, M);

19 free(*dynamic_matrix);

20 free(dynamic_matrix);
2

22 return 0;

3}

Listing 6.1: Initializing a Matrix in C
The program does the following:
1. It declares N and M.

2. Tt allocates memory of the size N X sizeof(c_int) for the “rows”, which is a

pointer to the “columns”.

3. Foreveryi € {0,..., N —1},itallocates memory of the size M X sizeof(c_int)

for the “column” of the ith “row”.
4. It calls resetMatrix to set every element in the matrix to 0.

5. It then frees the N X M matrix.

6.1.2 Translation Pipeline

As part of the translation pipeline Fig. 4.1, we first leverage c2rust to syntactically
transform the above program into unsafe Rust. This automatically generates a
lib.rs file containing function information and dependencies. Then, we pass
lib.rs to our tool, which performs our rewrite algorithm (algorithm 4.2.1). We

build a call graph to represent the calling relationship between the functions in
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the program. The calling relationship to note here is that main calls resetMatrix,

so we have to tackle resetMatrix first, and then main.

6.1.3 Refactoring resetMatrix

Consider the following c2rust-translated code for resetMatrix:

|  pub unsafe extern "C" fn resetMatrix(mut arr: *mut *mut libc::c_int,

> mut N: libc::c_int, mut M: libc::c_int) {

w

let mut i: libc::c_int = 0;

4 let mut j: libc::c_int = 0;

5 let mut mat: *mut *mut libc::c_int = arr;

6 i =0 as libc::c_int;

7 while i < N {

8 j = 0 as libc::c_int;

9 while j < M {

10 *(*mat.offset(i as isize)).offset(j as isize) = 0 as libc::c_int;

11 j+=1

3 i+=

Listing 6.2: resetMatrix, translated from c2rust

As in our rewrite pass for arrays, arr_pass (algorithm 4.2.3), we begin by
generating the AST of resetMatrix. Then, we collect the constraints from the

AST (Sec. 4.3). In line 10,

*(*mat.offset(i as isize)).offset(j as isize) = 0 as libc::c_int;

we can gather from the c-INDEXED rule that mat, if offset by 7, returns mat.offset (i
as isize). Furthermore, by the c-DEREF rule, mat.offset(i as isize) derefer-
ences to *mat.offset(i as isize). Thus, by the Array Reconstruction CHR rule,
when we solve the system of constraints, we know that if we index mat by i,
then we get *mat.offset(i as isize). But*mat.offset(i as isize) itselfisthen
offset, and dereferenced. Thus, we actually have a nested index: if we index into
*mat.offset(i as isize) with j, we get *(“mat.offset(i as isize)).offset(j
as isize).
Denote thelabels of mat, *mat.offset(i as isize),*(*mat.offset(i as isize)).offset(]

as isize) by a1, @z, as respectively. We also know, by the c-ASSIGNMENT rule, that
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Compat(az, c_int). Consider then the following relevant collected constraints:

Index(a1,usize, ay), Index(a, usize, az), Compat(as, c_int).

When we solve our constraints, we begin by looking at Index(ap, usize, a3),
since applying the s-INDEXEDMUT rule to generate trait bounds via the solver
(Fig. 4.5) for Index(a1,usize, ay) relies on knowing what a; is compatible with.
By the s-INDEXEDMUT rule (Fig. 4.5), we come up with a fresh type variable T0 that
implements the IndexMut<usize, Output=c_int> trait to represent arrays. The
s-INDEXEDMUT rule also adds Compat(a, T®) to our constraints.

Since we now know what a is compatible with, we can apply the s- INDEXEDMUT
rule for Index(a1,usize, @p). We come up with a fresh type variable T1 that
implements the IndexMut<usize, Output=T®> trait, and add Compat(a,T1) to
our constraints. Finally, by the c-ASSIGNMENT rule, we know that ay = label(arr).

With the above information, we can refactor resetMatrix into safe Rust that
uses the Rust idioms for dynamic allocation of arrays, since the constraints

indicate that arr and mat are being used as arrays.

1 pub extern "C" fn resetMatrix<

N

T1l: IndexMut<usize, Output = TO>,

3 TO: IndexMut<usize, Output = c_int>,

4 >(arr: &mut T1, mut N: c_int, mut M: c_int) {
let mut i: libc::c_int = 0;

6 let mut j: libc::c_int = 0;

7 let mut mat: &mut T1 = arr;

8 i =0 as c_int;

9 while i < N {

10 j = 0 as c_int;

11 while j < M {

(mat[i as usize])[j as usize] = 0 as c_int;

j+=1

i+4=1

Listing 6.3: resetMatrix, refactored
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Firstly, observe that all unsafe code have been removed! Again, this is a property
of our refactoring, where we bubble unsafe-ty inwards, and since the resetMatrix
was conservatively marked unsafe, most of the refactoring into safe code followed
immediately, except for the dereference of raw pointers (Sec. 2.1.3). For the
dereferencing of raw pointers, because our solved system of constraints indicated
that they could be lifted to arrays, by refactoring the dereferencing of raw pointers
into array indexing, we could also remove unsafe-ty. arr and mat, instead of
being a raw pointer to a raw pointer to an c_int, have been refactored to instead
be type T1, where T1 implements IndexMut<usize, Output=T0>, and where T®
implements IndexMut<usize, Output=c_int>. This completes our refactoring of

resetMatrix.

6.1.4 Refactoring main

Finally, we tackle main:

unsafe fn main_0() -> libc::c_int {

let mut N: libc::c_int = 3 as libc::c_int;

N

3 let mut M: libc::c_int = 2 as libc::c_int;

5 /% dynamic matrix allocation */

6 let mut dynamic_matrix: *mut *mut libc::c_int =

7 malloc((N as libc::c_ulong)

8 .wrapping_mul(::std::mem::size_of::<*mut libc::c_int>Q
9 as libc::c_ulong)) as *mut *mut libc::c_int;

10 let mut i: libc::c_int = 0 as libc::c_int;

1 while i < N {

let ref mut fresh® = *dynamic_matrix.offset(i as isize);

3 *fresh® =
14 malloc((M as libc::c_ulong)
5 .wrapping mul(::std::mem::size_of::<libc::c_int>(Q)

16 as libc::c_ulong)) as *mut libc::c_int;

7 i+=1

18 }

19 resetMatrix(IndexMutWrapper (dynamic_matrix, usize, TO), N, M);
20 free(*dynamic_matrix as *mut libc::c_void);

2 free(dynamic_matrix as *mut libc::c_void);

22 return 0 as libc::c_int;
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Listing 6.4: main, translated from c2rust, after call site update

The above code snippet is after we update the call site of resetMatrix —in line
19, note that we have IndexMutWrapper (dynamic_matrix, usize, T0). Denote the
label of dynamic_matrix as a. Then, during the arr_pass rewrite pass for main, the
constraint collector picks up from IndexMutWrapper (dynamic_matrix, usize, TO)
the constraint

ShouldIndex(a, usize, doy;)

where a,,; denotes the label of the output of indexing into dynamic_matrix.

By keeping track of type variables, we know that Compat(a,yt, T®), and that
TO implements the IndexMut<usize, Output = c_int> trait too, so we also add
the constraint

ShouldIndex(a oy, usize, c_int)

From lines 6-9, we gather that Malloc(«, Raw(c_int)). Because we are perform-
ing a malloc, and we know that T is an IndexMut which was lifted from a
Raw(c_int), we want to assume that in this case T® ~ Raw(c_int)), so we also
have Malloc(c, aoyt).

Then, by the Vec Reconstruction CHR rule, since we have that Malloc(a, aout)
and ShouldIndex(«, usize, a,,¢), we also have the constraint that Vec(a, usize, ayy¢).

Thus, lines 6-9 can be refactored as:

let mut dynamic_matrix = vec![Default::default(); N.try_into().unwrap()];

Listing 6.5: main, lines 6-9 after refactor

Next, for lines 12-16, let us consider line 12 first:

let ref mut fresh® = *dynamic_matrix.offset(i as isize);

We first observe that on the RHS of the assignment, we are indexing
into dynamic_matrix. Recall that dynamic_matrix has label «, so we denote
*dynamic_matrix.offset(i as isize) as having label a’. Then, the constraint
collector collects:

Index(«,usize, a’).
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From before, our constraint collector collected that
ShouldIndex(a, usize, ooyt ), ShouldIndex(a oy, usize, c_int).

By the Indexed Collapse rule, since we know that Index(a, usize, @’) and
ShouldIndex(a,usize, ay,t), we have that a’ ~ a,,;. Thus, we also have that
Index(a, usize, a,yt). The LHS of the assignment then states that fresh0 is a
mutable reference to the RHS: let the label of fresh® be af, and the label of

*fresh® be a}. Then, via the c-LETMUTREF rule (Appendix A), we collect that

Ref(af, '),

indicating that a is a reference to a’.

But since we know that o’ ~ «,,;, we also have
Ref(atf, atout).
In line 13, fresh® is dereferenced. Thus, via the c-DEREF rule, we collect that

Deref (ay, a}),

indicating that a should dereference into a}. Thus, by the Dereference Refer-

ence CHR rule, we can unify this with

From lines 14-16, we gather that Malloc(oz},c_int). But, as a} >~ ®out,
we also have that Malloc(apyut, c_int). Finally, with Malloc(aey,¢, c_int) and
ShouldIndex(ao,t, usize, c_int) from before, we can once again apply the Vec

Reconstruction CHR rule to get
Vec(aoyt,usize, c_int), Vec(a'f, usize, c_int)

Thus, we can rewrite lines 12-16 as:

54



N

let ref mut fresh® = dynamic_matrix[i as usize];

*fresh® = vec![Default::default(); M.try_into() .unwrap()];

In conjunction with the rest of the rewrites that we omit for brevity, as they

have been thoroughly covered in Ch. 4, this completes the refactoring of main:

fn main_0() -> libc::c_int {

let mut N: libc::c_int = 3 as c_int;

let mut M: libc::c_int = 2 as c_int;

let mut dynamic_matrix = vec![Default::default(); N.try_into().unwrap()];

let mut i: libc::c_int = ® as c_int;

while i < N {
let ref mut fresh® = dynamic_matrix[i as usize];
*fresh® = vec![Default::default(); M.try_into(Q) .unwrap(Q];
i+=1

}

resetMatrix(&mut dynamic_matrix, N, M);

return 0 as c_int;

Listing 6.6: main, refactored

6.1.5 Discussion

Since the refactoring is intended to be semantics-preserving, this refactoring
maintains the behavior of the original C program. In particular, the major

refactors were to

1. Replace usages of the calls to malloc in C that was intended to dynamically

allocate memory for an array, with the Rust idiom vec! ),

2. Lift raw pointers back into arrays iff they satisfied the constraints with the

help of a trait bound implementing the IndexMut trait, and finally,

3. Refactor the pointer arithmetic back into array indexing, which is syntactic
sugar for pointer arithmetic anyway.

6.1.6 Randomized Testing

We verify that the refactoring preserves the behavior of the original C program

by running a randomized unit test suite. For this program, we want to test three
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properties of our refactored program: firstly, that our dynamic allocation for
matrices is valid, and that resetMatrix correctly sets each element to 0; secondly,
that the allocated matrix indeed has N rows; and lastly that the allocated matrix
has M columns. To this end, we run the following unit test on our refactored
Rust program using cargo’s built-in command to execute unit tests of a package:
cargo test. The randomized unit test runs for n = 1000 iterations, and initializes
the matrix with a random size from 1 to 100. Next, it resets the matrix with our

refactored resetMatrix function. It then performs the checks described before.

#[test]

]

2 fn matrix_correct() {

w

// Run test 1000 times

4 for _ in 0..1000 {

5 // Initialize matrix with random size from 1 to 100.

6 let N = rand::thread_rng().gen_range(l..100);

7 let M = rand::thread_rng().gen_range(l..100);

3 let mut dynamic_matrix = vec![Default::default(); N.try_into().unwrap()];
9 let mut i: libc::c_int = 0 as c_int;

10 while i < N {

11 let ref mut fresh® = dynamic_matrix[i as usize];

12 *fresh® = vec![Default::default(); M.try_into(Q) .unwrap(Q];
3 i+=1

14 }

15 resetMatrix(&mut dynamic_matrix, N, M);

16 // First test: Check that every element in matrix is set to 0
17 for i in 1..N{
18 for j in 1..M {

19 assert_eq! (dynamic_matrix[i as usize][j as usize], 0)

20 3

21 1

2 // Second test: Check that we have N rows

23 assert_eq! (dynamic_matrix.len() as i32, N);

24 // Second test: Check that we have M columns

25 assert_eq! (dynamic_matrix[® as usize].len() as i32, M)
26 }

27 }

Running cargo test verifies that our program behaves as expected.

1 Finished test [unoptimized + debuginfo] target(s) in 0.55s
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w

9l

Running unittests (target/debug/deps/matrix-1bb6ae8ed49d39d9)

running 1 test

test tests::matrix_correct ... ok

test result: ok. 1 passed; 0 failed; ® ignored; O measured;

0 filtered out; finished in 0.31s

6.2 Quicksort

As another case study, we apply our framework to a recursive sorting algorithm,

Quicksort.

6.2.1 Original C Program

The original C program performs a canonical implementation of deterministic
Quicksort, with the choice of pivot being the right-most element in the array.

1 void swap(int *a, int *b) {

2 int t = *a;
3 *a = *b;

4 *b = t;

5}

7 int partition(int array[], int low, int high) {
8 int pivot = arrayl[high];

9 int i = (low - 1);

10 for (int j = low; j < high; j+ +) {

11 if (array[j] < pivot) {

12 iU;

13 swap (&array[i], &array[j]);
14 }

15 }

16 swap (&array[i + 1], &arrayl[high]);

17 return (i + 1);

20 void quickSort(int array[], int low, int high) {

21 if (low < high) {

22 int pi = partition(array, low, high);
23 quickSort(array, low, pi - 1);
24 quickSort(array, pi + 1, high);
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28 int main(Q) {
29 int datal] = {8, 7, 2, 1, 0, 9, 6};
30 int n = sizeof(data) / sizeof(datal[0]);

31 quickSort(data, 0, n - 1);

Listing 6.7: Quicksort in C

6.2.2 Translation Pipeline

As before, we leverage c2rust to syntactically transform the above program
into unsafe Rust. We then pass the generated 1ib.rs to our tool to perform the
rewrite algorithm. This begins by building a callgraph to represent the calling
relationship between the functions in the program, which in this case is: main
calls quicksort, which calls partition, which calls swap. Note that for quicksort,
which is recursive, we have handled cycles by eliminating them, since a single

pass of the analysis is sufficient to perform the rewrites.

6.2.3 Refactoring Quicksort

Our tool takes the output of c2rust, which has conservatively marked the entire
code as unsafe and has non-idiomatic uses of raw pointers as decayed arrays, and
refactors it into mostly-safe Rust code with idiomatic uses of Rust arrays instead
of raw pointers.

1 pub extern "C" fn swap(mut a: *mut libc::c_int, mut b: *mut libc::c_int) {
2 let mut t: libc::c_int = unsafe { *a };

3 unsafe { *a = unsafe { *b } };

4 unsafe { *b = t };

5}

6 pub extern "C" fn partition<T@: IndexMut<usize, Output = c_int>>(
7 array: &mut TO,

8 low: c_int,

9 high: c_int,

10 ) -> libc::c_int {

11 let mut pivot: libc::c_int = array[high as usize];

12 let mut i: libc::c_int = low - 1 as c_int;

13 let mut j: libc::c_int = low;

14 while j < high {
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if array[j as usize] < pivot {
i+=1;

swap (&mut array[i as usize], &mut array[j as usize]);

}
j+=1
}
swap (
&mut array[(i + 1 as libc::c_int) as usize],
&mut array[high as usize],
)3

return i + 1 as c_int;

pub extern "C" fn quickSort<T®: IndexMut<usize, Output = c_int>>(
array: &mut TO,
mut low: libc::c_int,

mut high: libc::c_int,

) o
if low < high {
let mut pi: libc::c_int = partition(array, low, high);
quickSort(array, low, pi - 1 as c_int);
quickSort(array, pi + 1 as c_int, high);
};
}

fn main_0(Q) -> libc::c_int {
let mut data: [libc::c_int; 7] = [
8 as c_int,
7 as c_int,
2 as c_int,
1 as c_int,
as c_int,

as c_int,

o O e

as c_int,

1;

let mut n: libc::c_int = (::std::mem::size_of::<[libc::c_int; 7]1>() as libc::c_ulong)
.wrapping_div(::std::mem::size_of::<libc::c_int>() as libc::c_ulong)
as c_int;

quickSort(&mut data, ® as c_int, n - 1 as c_int);

return 0 as c_int;

Listing 6.8: Quicksort, translated from c2rust
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6.2.4 Discussion

As discussed in Sec. 6.1.5, the refactoring maintains the behavior of the original
C program. Further, observe that the refactored Rust code is mostly-safe, with
idiomatic uses of Rust arrays replacing the non-idiomatic uses of raw pointers as
decayed arrays. Furthermore, while Quicksort is a recursive algorithm, because
our algorithm only needs a single pass across each function to perform the
necessary refactoring, we can handle recursion by eliminating cycles from our
call graph.

An interesting point to note is that the exception that makes this code mostly-
safe instead of completely-safe lies within the swap function. Since the swap
function works at the level of raw pointers and memory to swap the values at
the memory locations, it is inherently unsafe according to Rust’s provenance
of unsafety (Sec. 2.1.3). Therefore, the analysis performed by our tool cannot
determine a suitable refactoring that will remove this unsafe-ty. What our tool
can do, is to bubble unsafe code so that it is self-contained, i.e., we minimize the
scope of the unsafe block so that instead of encapsulating the entire function, it
simply encapsulates the dereferencing of raw pointers. Again, this is achieved as
a consequence of how our refactoring “bubbles” unsafe-ty inwards as it traverses

the AST of the function.

6.2.5 Randomized Testing

We verify that the refactoring preserves the behavior of the original C program
by running a randomized unit test suite. For this program, we want to test three
properties of our refactored program: firstly, our vector should be sorted in
monotonically increasing order; secondly that our vector should have the same
length after sorting; and lastly that our sorted vector should contain the same
elements. The randomized unit test runs for n = 1000 iterations. It initializes
a vector of size 10000, and then assigns it with random elements in the range
0 — 10000. Next, it performs our refactored Quicksort on the vector. It then

performs the checks described before.

#[test]
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fn quicksort_sorts() {
// Run our test 1000 times
for _ in 1..1000 {
// Initialize array with 10000 random elements from 0-10000
let mut rng = rand::thread_rngQ;
let range = Uniform::new(0®, 10000);
let mut vals: Vec<i32> = (0..10000).map(|_| rng.sample(&range)).collect();
let n = vals.lenQ);
let mut copy_of_vals = vals.clone();
quickSort(&mut vals, 0 as c_int, (n - 1).try_into(Q).unwrap());
// Three tests for sorted-ness.
// First test: sorted in monotonically increasing order
for i in 0..n-1{
assert!(vals[i] < vals[i+1])
}
// Second test: vector has same length after sorting
assert_eq!(n, vals.len());
// Third test: sorted vector contains same elements as before
copy_of_vals.sort();

assert_eq!(vals, copy_of_vals);

Running the tests with cargo test verifies that our program behaves as
expected.

Finished test [unoptimized + debuginfo] target(s) in 0.00s

Running unittests (target/debug/deps/gqsort-9f94a42ab344e435)

running 1 test

test tests::quicksort_sorts ... ok

test result: ok. 1 passed; ® failed; 0O ignored; ® measured; 0 filtered out;

finished in 1.66s
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Discussion and Conclusion

We conclude this work by comparing and contrasting our approach to Laertes,
exploring future instantiations of the framework, and finally discussing future

work.

7.1 Comparison with Laertes

As discussed in Sec. 3.5, Emre et al. [Emr+21] recently presented a first technique
for automatically removing some sources of unsafety in translated Rust programs.
Their tool, Laertes, is available as an artifact ([ES21]).

Their technique relies on the iterative refinement of the unsafe Rust code,
using the Rust compiler to guide their optimistic conversion of raw pointers into
safe references. This results in unwieldy code, as they explicate lifetimes and
convert all raw pointer declarations into optional references, with additional helper
functions to assist in rewriting pointers to references and for borrowing.

Furthermore, Laertes deliberately only targets raw pointers that are obtained
via custom memory allocation (via malloc), or if the raw pointer appears as
part of the public signature of an API implemented by the program. Thus,
they avoid raw pointers that are used in pointer arithmetic, which is what we
target, and hence our results are complementary as their tool would not function
on our array examples. Nevertheless, their motivating example in Listing 7.1,
demonstrates the readability of their translated code [Emr+21]. Even a simple
use-case like translating swap, as in Listing 7.2, requires optional references and

helper functions to operate those optional references.

lhttps://zenodo.org/record/5442253
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B W N =

pub fn find <’al , ’a2 , ’a3 , ’a4 , ’a5 , ’ab >
(mut value: c_int , mut node: Option <&’al mut node_t <’a2 , a3 >>)
-> Option <&’a4 mut node_t <’a5 , 'a6 >> {

if value < *(* node.as_ref().unwrap()).value.as_ref().unwrap() &&
I'(+ node.as_ref() .unwrap()).left.
is_none() {
return find(value , borrow_mut (&mut (*node.unwrap()).left))
} else {
if value > *(» node.as_ref().unwrap()).value.as_ref().unwrap() &&
I (* node.as_ref() .unwrap()).
right.is_none() {
return find(value , borrow_mut (&mut (*node.unwrap()).right))
} else { if value = *(* node.as_mut().unwrap()).value.as_mut() .unwrap()
{ return node } }

}

return None;

Listing 7.1: Laertes-translated code

fn swap(mut a: Option<&mut i32>, mut b: Option<&mut i32>) {
let mut t: i32 = *borrow_mut(&mut a).unwrap();
*pborrow_mut (&mut a).unwrap() = *borrow_mut(&mut b).unwrap(Q);
*porrow_mut (&mut b).unwrap() = t;

}

unsafe fn f(mut a: *mut i32, mut b: *mut i32) {

/o
swap (Some (&mut *a), Some(&mut *b))

}

pub fn borrow_mut<’a, ’b: ’a, T>(p: &’a mut Option<&’b mut T>) -> Option<&’a mut T> {
p.-as_mut() .map(|x| &mut =*x)
}

Listing 7.2: swap translated by Laertes

On the other hand, instead of coercing the compiler by using optional refer-
ences, we use constraints to guide our refactoring so that we can discern the
intent of the original code. By being able to determine when a raw pointer is
being used as an array, we can structure our refactoring to be more idiomatic by
using Rust idioms for arrays, rather than a brute-force wrapping with optional
references. The remaining sources of unsafe-ty can be handled by our rewrite
rules that target unnecessary conservative unsafe code.

While our approach only tackles lifting raw pointers to arrays for now, the
resulting code is higher-quality and more readable, in line with our goal of
making automatically translated code from C to Rust more palatable. To that

end, we envision being able to target other specific uses of raw pointers in C
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beyond arrays, such as strings, while leaving legitimate uses of raw pointers as
unsafe.

One future direction for our work is to target the lifting of raw pointers to
references or smart pointers using the framework in this thesis, instead of a
brute-force optimistic rewrite with the compiler as oracle (Sec. 7.2.2). It is our
hope that this will provide more readable, higher-quality code that is idiomatic

as the constraints will guide our refactoring.

7.2 Extensibility: Other Instantiations of the Framework

7.2.1 string_pass

To expand the repertoire of rewrite passes in our framework beyond arr_pass,
as a future direction we are exploring the refactoring of raw pointers that are
used as strings into idiomatic Rust.

To this end, we introduce a new instantiation of our framework, string_pass.
string_pass will require a separate constraint collection pass, constraint system
rules, and rewrite rules, that are specific to handling strings. As described in
Ch. 4, CHRusrty is a generic framework — thus, while instantiations of CHRusTY
may share some common rules (Fig. A.1 in Appendix A and Fig. B.1 in Ap-
pendix B), extending CHRusty with the instantiation specific to strings will be
to append an additional set of constraint collection rules, CHR rules, and rewrite
rules on top of the general system.

strings are similar to arrays in that they both can be dynamically allocated
and require the use of raw pointers, but have a safe abstraction in Rust. Rust
provides two notions of strings: String is the dynamic heap type that can be
modified, and str is an immutable sequence that is usually passed around as
a slice, &tr. This would be an interesting endeavour as Rust would eliminate
potential buffer overflows in C that are possible via misuse of functions like strcpy
rather than strncpy and so on; furthermore, the translation into either String
or str idioms is technically interesting and would benefit from our constraint

collection.
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(a) Lattice of Lin/Mut/Own (b) Lattice of Corresponding Rust Types

Figure 7.1: Lattice of Lin/Mut/Own and corresponding Rust types

7.2.2 pointer_pass

Another future direction for rewrite passes that we are exploring is a pointer_pass
instantiation of our framework. We draw inspiration from the Stacked Borrows
model that defines an aliasing discipline for Rust programs [Jun+19]. Stacked
Borrows avoids the use of lifetimes by the borrow checker, instead using a dynamic
analysis that does not use lifetimes. By supporting a variant of the Stacked Borrows
model and capturing the aliasing discipline as a type constraint system according
to their operational semantics, we will be able to extract ownership information
and a happens-before relation as constraint information.

In essence, we would like to keep track of three orthogonal but integral
properties of a Rust variable: whether it is an affine usage, whether it is mutable,
and whether it is owned. These properties form a lattice as in Fig. 7.1a. Then, for
each function signature and field, we want to assign the least point in the lattice
that supports all the operations that are performed on that field. Every element
in Fig. 7.1a then corresponds to a Rust type as in Fig. 7.1b.

Since our current constraint system conflates both a general array constraint
system together with a mutability constraint system, we can separate our

current implementation into different constraint collection passes. Then, we
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can leverage the mutability constraint collection pass as part of the constraint
system for pointer_pass, without having to rely on the array constraint system.
The constraint system can then help justify certain reorderings and program
transformations, such as indicating whether to lift a raw pointer into a reference,

a smart pointer like a Box or Rc, or to not lift at all.

7.3 Future work

In this section, we discuss future work for the development of CHRusry, besides

the other instantiations listed in Sec. 7.2.

7.3.1 Integration with c2rust’s cross-checking

The c2rust team has provided a cross-checking tool to automatically verify that
their translated program behaves the same as the original C code.? This is done
by comparing execution traces of the program before and after transformation.
For more robust testing, instead of our randomized testing suite, future work
would interface with this cross-checking tool to automatically verify that the

code refactored by CHRusty preserves behavior.

7.3.2 Handling the rest of the C Language

As of now, CHRusty only handles a small subset of the C language. While
our tool provides support for running on large Cargo projects by using the
lib.rs file as an entry-point, it still does not handle a large number of C types.
Furthermore, additional support will have to be implemented for constructs
like structs, unions, efc., in order for CHRusty to work on any arbitrary project.
While it may be trivial to lift all raw pointers to Re<RefCell<T>>, this sacrifices
performances and the static guarantees of Rust in favour of removing unsafety,
which is contradictory as unsafety is a means provided by the Rust compiler to
allow performant uses of memory provided the programmer can guarantee that
the unsafe code does not lead to undefined behaviour.

Regardless, we have shown that CHRusty successfully refactors both static

2https://c2rust.com/manual /docs/cross-check-tutorial.html
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and dynamic arrays regardless of type, so providing support for the rest of the C
language is a matter of implementation rather than contribution in the context

of array refactoring.

7.3.3 Survey on Idiomatic Code & Uses of Raw Pointers

While we claim that our refactoring leads to more idiomatic code by virtue of
using the Rust idioms for dynamically allocating memory for arrays, and for
array indexing, this claim can still be supported by a survey of what idiomatic
code should look like.

Furthermore, while it seems obvious that arrays are extremely prevalent
in C code, a survey of the usage of arrays in real-life C code, and the usage
of raw pointers for the purposes of arrays, would be useful in illustrating the
teasibility of CHRusty. This survey should also be expanded to other uses of raw
pointers, such as for strings, so that we have a better sense of what proportion
of raw pointers are intended for arrays, strings, and other uses, and thus what

proportion of raw pointers our tool tackles.

7.4 Conclusion

This thesis presents a framework, CHRusry, for translating C to safer, and more
idiomatic Rust. Our implementation is an instatiation of this framework that
specifically targets the lifting of raw pointers to arrays, though we also suggest
other instantiations like string_pass and pointer_pass. Existing automatic
translators from C to Rust do not preserve the memory-safety property that
makes Rust code desirable; and, even if they do, the resulting code is difficult to
work with. Our tool provides an idiomatic refactoring from unsafe Rust to safer
Rust by lifting raw pointers back to arrays, in accordance with the intent of the
original program. The feasibility of this approach hints at a future where one
can automatically translate C code into Rust, perhaps as part of a migration of a
legacy C codebase, and then continue working with the newly-translated Rust

codebase alongside the performance and safety guarantees of Rust.
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c-Fun

Constraint Collection Rules

n n
a = label(e) a; = label(vi),i € 1..n M = U{v,- tog} C= U{Compat(ai,’[i)}
i=1 i=1

Y(fn fname(vy : T1,..,Vn : Tn) — Toutie},[]) = (e, M)UC

n
a; = label(e;),iel.n ' =| JZ(es, M)
i=1

a = label(v) a’ = M(v)

Y(fname(eq, ..., en), M) 2 X/ (v,M) £ {a =a'}

a = label(v)

a1 = label(eq) ap = label(ey) a3 = label(eq; e3) M ={v:a}uM

L(letv:T = ey;e0, M) 2 {a = a1,ar =~ az} UX(er, M) U X(en, M)

ap = label(ey) a = label(e; e2)
L(ei;ez, M) = {a = az} UX(e1, M) U E(ez, M)

c-WHILE

a = label(while e; {ez}) ap = label(ey)
Y(while e; {ey}, M) = {a ~ az}X(e1, M) U X(ep, M)

C-ASSIGNMENT

ar = label(er) ag = label(ey)

T(e1 == ez, M) = {ay ~ as, Mut(ag)} U Z(e1, M) U Z(ca, M) T(c, M) = {}

a = label(e)

a’ = label(e as 7) e = fname(ey, ..., ey) = fname # malloc

Y(e as 1, M) £ {a = a’, Compat(a, 1)}

a1 = label(eq) ap = label(ey)

Z“(el bop eZ/M) 2 {0(1 = az} U Z“(C]/Z\/I) U Z“(02/ M)

Figure A.1: General Constraint Collection Rules
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c-MaLLoc

« = label(malloc(N - sizeof(t))) X' = X(e, M)
Y(malloc(N - sizeof(t)), M) = {Malloc(a, 7)} U {Compat(a, 7)} U L/

a = label(e) Y = X(e, M) U Z(Tout, M) a’ = M(e)

Y(IndexMutWrapper(e, Tind, Tout), M) = {ShouldIndex(ct, Tjng, Tout), @ =~ a’} UL’

a = label(ej.offset(ey))

aq = label(eq) ay = label(ey) t] = Offset(ay, az, @) t5 := Compat(az, usize)
X(e.offset(ez), M) = {t{, t5} UL(e1, M) U X(e2, M)

c-DEREF

a = label(xe) o’ = label(e)
Y(+e, M) £ {Deref(a’, @)} U X(e, M)

a = label(v) a1 = label(eq) ap = label(ey) as = label(ey; e3) M ={v:a}uM
Y(let refmut v:1 = eq;e0, M) 2 {a@ =~ a1, ap = a3, Ref(a, a7)} UX(e1, M) U L(en, M)

Figure A.2: Array-related Constraint Collection Rules
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Rewrite Rules

aj =label(vi) T, 7},¢;,Gi Eiforieln X =UL ¥,

a = label(e) Yo, d,GLE G=UL,G UG ¥”; unsafe{e} — €’

%; unsafe fn fname(cy vi : T1,..,Cn Vn:Tn) = ¢ T {e} —
fn fname(G)(c} v1 : 1], ..,y vn 1 Ty) = ¢ 7' {e'}

Y; unsafe{ei} — e} fori € 1.n

Y; unsafe {fname(ey, .., en)} — fname(e], .., ey)

u-LET

a = label(v) Lk, foriel.n Y; unsafe{e;} — e ¥; unsafefez} — €

L; unsafe{letcv:7 = ej;e} = letc' v:t = efe)

Y, unsafefe;} — e} Y, unsafe{ez} — €

¥; unsafef{e;; e} — ;e

U-ASSIGNMENT
Y, unsafefe;} — e] Y, unsafe{e;} — € U-CONSTANT

Y, unsafe{e; := e} — €] =€) Y; unsafe{c} - c

a = label(e as 1) LTra=t L; unsafe{e} — e’

Y; unsafe{v} — v Y; unsafe{eas 7} » e’ as 1’
¥; unsafe{e;} — €] Y; unsafe{ez} — ¢}

%; unsafe{e; bop ez} — €/ bop ¢},

U-WHILE

¥; unsafe{e;} — €] %; unsafe{ez} — €

Y; unsafe{while e; {ez}} — while e} {e}}

Figure B.1: General Transformation Rules
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U-ARRAYINDEX

Y + Index(label(e1), _, ) ¥; unsafe{e;} — e} Z; unsafe{e;} — )

Z; unsafe{xei.offset(e)} — €/[e)]

U-DEREFARRAY

T + Index(label(e1), _, ) Y, unsafefe;} — e}

Y, unsafe{+e;} — e/[0]

U-VECWRAPPER

a = label(IndexMutWrapper(e, Tind, Tout)) X+ Index(e, _, Tout)

Y, IndexMutWrapper(e, Tind, Tout) — Mut Ref e

a = label(malloc(N - sizeof(1)))

T+ Vecla, ing, dout) Y + Malloc(et, _) Y Qout = Tout T = Tout

Y, unsafe {malloc(N - sizeof(7))} — vec![Tout;N]

U-VECFREE

a = label(e) L+ Vecla,_, ) X + Malloc(ar, _)

Y, unsafe {free(e as *mut 1)} — ()

Figure B.2: Array-related Transformation Rules

u-UprDATEVEC

type(e) = Raw(t) type(p) = T : IndexMut(7y, Output = 1)

Z; (e, p) »» IndexMutlirapper(e,usize, 1)

‘ U-UPDATESTATICARRMUT ‘
type(e) = Mut Array(t) type(p) = T : IndexMut(t, Output = 1)
L; (e.as_mut_ptr(), p) w> Mut Ref e

‘ U-UPDATESTATICARRIMM ‘
type(e) = Array(t) type(p) = T : Index(7y, Output = 1)
Y; (e.as_mut_ptr(), p) ~» Ref e

’ U-UPDATECALLSITE ‘

fname = callname fn callname(py, ..., Pn) Y; (ei, pi) e}
Y, fname(ey, .., en) —  fname(e], .., ep)
callname

Figure B.3: Array-related Call Site Update Rules
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