

Towards Locally-Parallel Processing of

Smart Contract Transactions

Nicholas Chin Jian Wei

Capstone Final Report for BSc (Honours) in

Mathematical, Computational and Statistical Sciences

Supervised by: Dr. Ilya Sergey

AY 2020/2021

zĂůĞͲEh^��ŽůůĞŐĞ��ĂƉƐƚŽŶĞ�WƌŽũĞĐƚ��
�
���>�Z�d/KE�Θ��KE^�Ed�

�
ϭ͘� /�ĚĞĐůĂƌĞ�ƚŚĂƚ�ƚŚĞ�ƉƌŽĚƵĐƚ�ŽĨ�ƚŚŝƐ�WƌŽũĞĐƚ͕�ƚŚĞ�dŚĞƐŝƐ͕�ŝƐ�ƚŚĞ�ĞŶĚ�ƌĞƐƵůƚ�ŽĨ�ŵǇ�ŽǁŶ�ǁŽƌŬ�ĂŶĚ�ƚŚĂƚ�

ĚƵĞ�ĂĐŬŶŽǁůĞĚŐĞŵĞŶƚ�ŚĂƐ�ďĞĞŶ�ŐŝǀĞŶ�ŝŶ�ƚŚĞ�ďŝďůŝŽŐƌĂƉŚǇ�ĂŶĚ�ƌĞĨĞƌĞŶĐĞƐ�ƚŽ��>>�ƐŽƵƌĐĞƐ�ďĞ�ƚŚĞǇ�
ƉƌŝŶƚĞĚ͕�ĞůĞĐƚƌŽŶŝĐ͕�Žƌ�ƉĞƌƐŽŶĂů͕�ŝŶ�ĂĐĐŽƌĚĂŶĐĞ�ǁŝƚŚ�ƚŚĞ�ĂĐĂĚĞŵŝĐ�ƌĞŐƵůĂƚŝŽŶƐ�ŽĨ�zĂůĞͲEh^��ŽůůĞŐĞ͘�
�

Ϯ͘� /�ĂĐŬŶŽǁůĞĚŐĞ�ƚŚĂƚ�ƚŚĞ�dŚĞƐŝƐ� ŝƐ�ƐƵďũĞĐƚ�ƚŽ�ƚŚĞ�ƉŽůŝĐŝĞƐ�ƌĞůĂƚŝŶŐ�ƚŽ�zĂůĞͲEh^��ŽůůĞŐĞ� /ŶƚĞůůĞĐƚƵĂů�
WƌŽƉĞƌƚǇ�;zĂůĞͲEh^�,Z�ϬϯϵͿ͘��

�
�
����^^�>�s�>�
�
ϯ͘� /�ĂŐƌĞĞ͕�ŝŶ�ĐŽŶƐƵůƚĂƚŝŽŶ�ǁŝƚŚ�ŵǇ�ƐƵƉĞƌǀŝƐŽƌ;ƐͿ͕�ƚŚĂƚ�ƚŚĞ�dŚĞƐŝƐ�ďĞ�ŐŝǀĞŶ�ƚŚĞ�ĂĐĐĞƐƐ�ůĞǀĞů�ƐƉĞĐŝĨŝĞĚ�

ďĞůŽǁ͗�΀ĐŚĞĐŬ�ŽŶĞ�ŽŶůǇ΁�
�

R�hŶƌĞƐƚƌŝĐƚĞĚ�ĂĐĐĞƐƐ���
DĂŬĞ�ƚŚĞ�dŚĞƐŝƐ�ŝŵŵĞĚŝĂƚĞůǇ�ĂǀĂŝůĂďůĞ�ĨŽƌ�ǁŽƌůĚǁŝĚĞ�ĂĐĐĞƐƐ͘��

�
R��ĐĐĞƐƐ�ƌĞƐƚƌŝĐƚĞĚ�ƚŽ�zĂůĞͲEh^��ŽůůĞŐĞ�ĨŽƌ�Ă�ůŝŵŝƚĞĚ�ƉĞƌŝŽĚ�
DĂŬĞ� ƚŚĞ� dŚĞƐŝƐ� ŝŵŵĞĚŝĂƚĞůǇ� ĂǀĂŝůĂďůĞ� ĨŽƌ� zĂůĞͲEh^� �ŽůůĞŐĞ� ĂĐĐĞƐƐ� ŽŶůǇ� ĨƌŽŵ� ͺͺͺͺͺͺͺͺͺͺͺͺͺ�
;ŵŵͬǇǇǇǇͿ� ƚŽ� ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ� ;ŵŵͬǇǇǇǇͿ͕� ƵƉ� ƚŽ� Ă� ŵĂǆŝŵƵŵ� ŽĨ� Ϯ� ǇĞĂƌƐ� ĨŽƌ� ƚŚĞ� ĨŽůůŽǁŝŶŐ�
ƌĞĂƐŽŶ;ƐͿ͗�;ƉůĞĂƐĞ�ƐƉĞĐŝĨǇ͖�ĂƚƚĂĐŚ�Ă�ƐĞƉĂƌĂƚĞ�ƐŚĞĞƚ�ŝĨ�ŶĞĐĞƐƐĂƌǇͿ͗��
ͺͺͺ͘��
�
�ĨƚĞƌ�ƚŚŝƐ�ƉĞƌŝŽĚ͕�ƚŚĞ�dŚĞƐŝƐ�ǁŝůů�ďĞ�ŵĂĚĞ�ĂǀĂŝůĂďůĞ�ĨŽƌ�ǁŽƌůĚǁŝĚĞ�ĂĐĐĞƐƐ͘�
�

�
R�KƚŚĞƌ�ƌĞƐƚƌŝĐƚŝŽŶƐ͗�;ƉůĞĂƐĞ�ƐƉĞĐŝĨǇ�ŝĨ�ĂŶǇ�ƉĂƌƚ�ŽĨ�ǇŽƵƌ�ƚŚĞƐŝƐ�ƐŚŽƵůĚ�ďĞ�ƌĞƐƚƌŝĐƚĞĚͿ���
ͺͺͺ�
ͺͺͺ�
�

�
�
�
�

ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ�� ������ ������
EĂŵĞ�Θ�ZĞƐŝĚĞŶƚŝĂů��ŽůůĞŐĞ�ŽĨ�^ƚƵĚĞŶƚ�

�
�

ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ�� ����� � �ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ��
^ŝŐŶĂƚƵƌĞ�ŽĨ�^ƚƵĚĞŶƚ�� � � � � �ĂƚĞ��
� �
�
�
ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ�� ������ ������� ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ��
EĂŵĞ�Θ�^ŝŐŶĂƚƵƌĞ�ŽĨ�^ƵƉĞƌǀŝƐŽƌ� � � � �ĂƚĞ��

�

Nicholas Chin Jian Wei, Cendana College

02 April 2021

Prof. Ilya Sergey 04 April 2021

i

ii

Acknowledgements
The following people have provided endless support and guidance through-

out my experience in Yale-NUS College, for which I am thankful.

Dr. Ilya Sergey, my capstone supervisor, provided the motivation and

guidance throughout my education. His lectures structured my founda-

tional knowledge and inspired my pursuit in my career.

George Pîrlea for the support and troubleshooting efforts throughout

this project. His thorough understanding of the Zilliqa blockchain helped

me plan and design the new implementation, as well as breezing through

debugging erroneous code.

My parents for supporting my education and always taking care of

my well-being, and my siblings for being wonderful.

Finally, Courtney and my amazing friends—Allie, Raja, Shaf, Sid—for

being great people, endless support, and creating many unforgettable ex-

periences throughout the last four years.

iii

YALE-NUS COLLEGE

Abstract

B.Sc (Hons)

Towards Locally-Parallel Processing of Smart Contract Transactions

by Nicholas CHIN Jian Wei

Blockchain protocols are notorious for poor scalability and low transac-

tion processing throughput. This project proposes a method of locally-

parallel processing smart contract transactions for higher throughput.

Based on contract static analysis, this project exploits disjoint memory

footprints for a lock-free, non-conflicting transaction execution. This pa-

per describes integrating a procedure for local concurrent processing in

the Zilliqa blockchain, a sharded blockchain with smart contract support,

and evaluates the performance in a distributed network.

Keywords: Blockchain, Concurrent, Smart Contract

HTTPS://WWW.YALE-NUS.EDU.SG/

iv

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

2 Background 5

2.1 Nakamoto Consensus . 5

2.2 Concurrency for Increasing Throughput 6

2.3 Recent Works . 9

3 Technical Setup 12

3.1 Zilliqa Blockchain . 12

3.2 Scilla . 14

3.3 Implementation Intricacies 16

4 Incorporating Concurrency 19

4.1 Outline . 19

4.2 Transaction Selection . 20

4.3 Mutex Locks . 24

4.4 Reverting Changes . 25

4.5 Micro-block Verification . 28

v

5 Preliminary Evaluation 30

5.1 Testing Framework . 30

5.2 Network Structure . 31

5.3 Evaluation . 32

6 Discussion 35

6.1 Source Code . 35

6.2 Encountered Issues . 35

6.3 Future Work . 36

6.4 Conclusion . 37

Bibliography 38

A Crowdfunding Smart Contract 40

vi

List of Figures

2.1 Grouping of affected account states based on transactions . 9

3.1 Zilliqa network and transaction processing 14

3.2 Counter smart contract . 15

3.3 Transaction Processing IPC 18

4.1 Simplified ProcessTransactions() 21

4.2 Concurrent ProcessTransactions() 22

4.3 Flowchart of transaction processing in parallel runtime . . 23

4.4 Account wide mutex locks 24

4.5 Account wide mutex locks with check 25

4.6 Modified contract reversion 27

4.7 Data read from Zilliqa contract state 27

4.8 JSON receipt of read values 28

1

Chapter 1

Introduction

Blockchains have gained significant popularity and importance in pro-

viding a decentralized and distributed ledger. Even more so with the

adoption of blockchain-based smart contracts, expanding the usages of

blockchains beyond purely a decentralized ledger. With blockchains be-

ing reliant on a consensus protocol, work must be distributed to and ex-

ecuted on every network on the node. For this reason, blockchains are

slow in processing a large amount of transactions [1].

Transactions in blockchains are currently executed sequentially. Se-

quential execution guarantees all nodes reaching a consensus. How-

ever, blockchains fail to utilize the power of modern multi-core systems

and multi-threaded, concurrent execution. Ideally, transactions can be

grouped together for parallel execution. By exploiting modern computer

architecture, blockchains can achieve higher throughput.

This project aims to add concurrency to smart contract executions in

efforts to achieve better performance while maintaining the semantics of

the transactions and preserving the blockchain protocol.

Chapter 1. Introduction 2

On Blockchain Efficiency. Blockchains are slow. To achieve a consen-

sus across the network, every node must process the same set of transac-

tions. Now one might suggest that adding additional nodes to the net-

work should improve the throughput. Intuitively, more nodes available

for processing equates to more total processing power, hence improved

performance.

However, the consensus protocol requires every node to process the

same amount of work. So despite adding more nodes, the work is not

split and shared across the network. Thus the network will see the same

performance or even worse performance due to bandwidth limitations.

Other proposals on improving blockchain performance are also very

attractive. Adopting the idea of sharding in distributed databases, vari-

ous networks shard the blockchain networks into smaller sub-networks,

each responsible for a subset of the transactions. Networks such as Zilliqa

and Ethereum 2.0 utilize network sharding [6, 15]. But this solution fo-

cuses on the structure of the network.

This project is interested in increasing performance at the node level

without altering the network. As mentioned previously, blockchains fail

to utilize modern multi-core computer architecture. Striving for concur-

rent execution will exploit modern computer architecture which is, for

the most part, untouched in production network blockchains. However,

automatic concurrency is hard.

On Concurrent Execution. While parallel transactions can help, they

come with many concerns. Indeed, concurrent executions should not alter

the semantics of the blockchain and should be equivalent to sequential

executions, only faster.

Chapter 1. Introduction 3

Recent work by Dickerson et al. explores optimistic concurrency of

smart contract execution by speculative execution of transactions with

execution rollbacks on conflicting transactions [4]. Although this method

of concurrency does achieve speedup, it contains major implications on

the network. Their work requires additional message passing of execu-

tion schedules between miners and validators of the Ethereum network

[4]. Therefore, a change in the network’s protocol must be made.

Our Goal. This project aims to provide a method of concurrent execu-

tion of smart contracts without altering the network protocol. In this way,

transactions can be executed concurrently without requiring extra infor-

mation in message passing while maintaining the semantics of sequen-

tial execution. It aims to provide a solution for optional increased perfor-

mance at the local level. For members of the network who wish to exploit

multi-core processors, they can choose to do so. Otherwise remaining on

sequential execution will provide the same results, only slower.

Contributions. The contributions of this report are:

• Designing a runtime in which unmodified transactions with smart

contracts can be parallelized within the node.

• Investigation of a real-world blockchain infrastructure to assess the

feasibility of this design.

• Implementation of the framework for parallel executions.

• Prelimiary experiments of locally-parallel processing transactions.

Chapter 1. Introduction 4

Outline. This report will be structured as follows:

• Chapter 2: Background knowledge on blockchains and current/pro-

posed solutions on improving blockchain transaction processing

performance.

• Chapter 3: Technical setup on how Zilliqa blockchain processes

transactions in tandem with Scilla, a smart contract programming

language.

• Chapter 4: Discussing details of the current transaction processing

implementation and changes for local parallel processing.

• Chapter 5: Testing and evaluating changes to the Zilliqa blockchain.

• Chapter 6: Discussions on challenges faced and future improve-

ments.

5

Chapter 2

Background

In this chapter we provide the necessary background on blockchain con-

sensus protocols, outline the main scalability bottlenecks, and survey the

existing approaches for increasing blockchain throughput.

2.1 Nakamoto Consensus

The Nakamoto consensus protocol has been instrumental in the devel-

opment of blockchain technology. At its very essence, every transaction

in the network must be verified by members of the network. After pro-

cessing a group of transactions, each member of the network comes to

a conclusion on the resultant state post transactions, with the common

majority being the network accepted state [8]. This allows for the trans-

fer of digital currencies, like Bitcoin, without a centralized regulating

body. With the adoption of integrating smart contracts [14] in blockchain,

blockchains has been in the spotlight for upcoming technologies and ap-

plications.

But the Nakamoto consensus is inherently slow and suffers in scal-

ability roadblocks. Bandwidth limitations are reached due to allocation

Chapter 2. Background 6

of workloads to all members across network. Performance limitations

are reached due to workload processing being required by all members

across the network. Indeed, an increase in the number of members join-

ing the network results in more members who must receive and process

all transactions, which slows down the entire network [1]. In practice,

Bitcoin sits around 7 transactions per second and Ethereum at 15 trans-

actions per second [6, 11].

Efforts in improving performance of blockchains has been a major fo-

cus. For any blockchain to be widely adopted by the public, they must

reach a level of performance that can compete with centralized, third-

party bodies.

2.2 Concurrency for Increasing Throughput

Despite the scalability issues with the Nakamoto consensus, proposals

for alleviating scalability bottleneck have been proposed. We can break

them down into two categories: global and local solutions. Global solu-

tions alters the structure of the network while local solutions only alters

the node-level. Currently, a popular global solution in increasing perfor-

mance is through network sharding, a strategy borrowed from sharding

distributed databases. By partitioning the network into intercommuni-

cating subnets with disjoint responsibilities, throughput performance in-

creases [3].

Instead of all nodes in a network communicating with each other,

nodes now form groups, called shards, which process a proportion of

all incoming transactions and strictly maintain only intra-shard commu-

nication. A designated shard leader (or leaders) would be responsible for

Chapter 2. Background 7

necessary inter-shard communication, minimizing the number of mes-

sages being sent.

Suppose a blockchain contains n total accounts and therefore a total of

n different states to account for. In the traditional setting, each node must

manage every account. However, in a sharded setting, each node now

only accounts for n
s states, where s is the number of shards in the net-

work. Adding a node to the network would increase the size of a shard,

which would slightly decrease the performance of said shard. However,

with a sufficient amount of new nodes, a new shard could be created,

further partitioning the number of states each node must account for and

therefore increasing network performance. Hence, a sharded blockchain

offers an improvement on scalability.

A local solution for increase scalability is adding concurrency to trans-

action processing. Many modern systems are equipped with multi-core

processors that allow for efficient concurrent processing. Currently, many

(if not all) blockchains process transactions sequentially. Sequential pro-

cessing is simple in design and easier to trace and debug. Unfortunately,

this means modern processors’ potentials are not fully utilized.

However, we cannot simply run transaction processing in multiple

threads concurrently. Suppose an account had a balance of 100 tokens

they would like to transfer out 60 and 70 tokens in two different transac-

tions. In a sequential setting, the node would deny the second transac-

tion as the account would have an insufficient balance. In a concurrent

setting, we cannot ensure 1 that either transaction would know the other

has already occurred. Indeed, if 2 threads read that the account has a

1Without any use of careful granular locking mechanisms

Chapter 2. Background 8

sufficient balance of 100, both transactions would be processed without

error despite the account overspending 30 tokens.

One key area where we can add concurrent processing safely is on

disjoint states. If a batch of transactions only affect disjoint accounts or

states, we could safely process them concurrently. Suppose two differ-

ent accounts each wanted to transfer tokens to another account, both of

which are neither the other sending account nor the same receiving ac-

count. It would be safe to process both transactions concurrently as the

balance of one sending account should not affect the balance of the other

sending account.

Define accounts A, B, C, D as user accounts who all contain some

amount of tokens as part of their balance. They can send and receive

tokens by transferring to each other. Suppose we have transactions t1 =

transfer (A → B, 100) and t2 = transfer (C → D, 100) where (A →

B, 100) denotes account A transferring 100 tokens to account B. It is clear

that both transactions act on disjoint accounts and states since both trans-

actions do not share accounts. Both such transactions can be paralleliz-

able.

Now suppose we have transactions t3 = transfer (A → C, 100) and

t4 = transfer (B → C, 100). From the perspective of account C, they

will be receiving 100 tokens each from accounts A and B. Regardless

of which transaction is processed first, the net effect is still +200 tokens.

This implies both transactions have commutative effects (by exploiting

the commutativity of addition), and therefore can be parallelized.

In Figure 2.1, we group how each transaction affects which account

states. Transactions 1 and 2, marked in black and red, clearly depict the

Chapter 2. Background 9

A B

DC

t1

t2

t3

t4

FIGURE 2.1: Grouping of affected account states based on
transactions

disjoint account states between both transactions. Transactions 3 and 4,

marked in blue and green, show that both transactions act on account C,

but their commutative effects allow both to be parallelizable.

For simplicity and setting a manageable scope, this report focuses

solely on disjoint transactions. Transactions that share some state require

much more care to ensure the semantics of the transactions are still main-

tained.

2.3 Recent Works

Concurrent processing in blockchains is not novel; recent works have

suggested multiple approaches to concurrent processing.

Optimistic concurrency. Dickerson et al. implements concurrent exe-

cution of smart contracts in the Ethereum blockchain. Their proposal

Chapter 2. Background 10

follows a strategy of concurrent execution through optimistic concur-

rent execution. Dickerson et al. based their tactic on software transac-

tional memory, requiring a record for each read and write on a piece of

data. Transactions are executed in parallel and a log of state changes

are recorded. Any transactions that may conflict must have their effects

rolled back and subsequently executed sequentially [4].

For this reason, nodes in the Ethereum network must be altered to

verify correct concurrent executions and subsequently require repeated

execution of the same transactions in the event of conflicts. Thus, the

Ethereum protocol must be altered. Furthermore, this optimistic approach

incurs memory overhead by requiring a transactional log to be kept for

every data read and write.

Static analysis on disjoint memory accesses. Baroletti, Galletta, and

Murgia propose a theoretical approach to concurrent smart contract pro-

cessing. They propose that transactions are swappable if some transac-

tions t1t2 processed in either order produces the same blockchain state

[2]. Their work solely focuses on only disjoint states but does not detect

commutative operations on smart contracts. As such, they be unable to

process ERC-20 [5] based smart contracts, which are predominantly the

most commonly executed smart contract [9].

Empirical study on historic transactions. Saraph and Herlihy performed

an empirical study on historical transactions of the Ethereum blockchain.

Their work discovered that optimistically running transactions concur-

rently encountered very minimal conflicts that required rollbacks and

their simplest strategies still produced non-trivial speedup. Notably,

Chapter 2. Background 11

speedups began to declined as the volume of transactions increased [10].

Handling the volume of transactions can be solved through network shard-

ing, which Ethereum2 does not support.

Static analysis for sharding smart contracts. Kumar, Pîrlea, and Sergey

propose a static analysis, named CoSplit, for sharding smart contracts.

Similar to sharding a blockchain network, they show that smart con-

tracts themselves can be sharded by their memory footprint via static

analysis. This footprint allows different parts of the contract to be parti-

tioned across the network, increasing performance in a linear relation to

the number of shards of the blockchain network [7]. CoSplit is currently

implemented in a development branch of Scilla (see Chapter 3) and a

development branch of the Zilliqa blockchain. Furthermore, the static

analysis can dually be used to determine safe concurrent processing of

smart contract transactions.

With the findings from CoSplit, we can build on sharding smart con-

tacts and utilize the static analysis for concurrent execution. Zilliqa pro-

vides support for smart contracts through the Scilla programming lan-

guage. As such, we decided to proceed with exploring Zilliqa and modi-

fying it for concurrent processing.

2Ethereum 1.0 does not support sharding but Ethereum 2.0 (currently in develop-
ment) supports sharding [6]

12

Chapter 3

Technical Setup

In this chapter, we explore the technical setup of the Zilliqa blockchain,

Scilla smart contract programming language, and the intricacies of the

current implementation.

We are interested in how Zilliqa processes transactions that invoke

smart contracts. We explore how Zilliqa processes such transactions and

note how we may modify it for concurrent processing.

3.1 Zilliqa Blockchain

Zilliqa is the first sharded blockchain and supports smart contracts [15].

As previously discussed, a sharded blockchain partitions its nodes into

subnets that are directly responsible for their own disjoint state. In this

way, Zilliqa scales well as nodes are added and as the number of transac-

tions increase.

Concretely, Zilliqa contains three main groups: the shards, the Di-

rectory Service (DS) committee, and the lookup nodes. Lookup nodes

distribute incoming transactions to the shards and DS committee. Shards

Chapter 3. Technical Setup 13

consist of a group of nodes that are responsible of their own unique par-

tition of the global state. Shards process transactions that are assigned

to them. The DS committee is a special shard that communicates with

all other shards. They are assigned transactions that alter states amongst

multiple shards.

Looking at a round of transaction processing, named an epoch, we can

understand how the entire network progresses and maintains a shared

global state. We can break down each epoch into 3 phases.

In the first phase, transactions are sent to the lookup nodes. The

lookup nodes then distribute transactions based on their assigned shard.

Those transactions that would affect multiple shards are sent to the DS

committee.

The second phase consists of processing transactions and forming

micro-blocks. Each node begins to process their assigned transactions.

Then, the shards undergo a round of practical byzantine fault tolerance

(PBFT) consensus protocol to arrive at a consensus of a new shared state.

Once a consensus is reached, a micro-block is formed.

The thrid and final phase consists of forming the final-block. At this

stage, all shards would have already formed their respective micro-blocks.

These blocks are sent to the DS committee. The DS committee undergoes

PBFT protocol to arrive at a consensus of which micro-blocks to account

for. Once a consensus is reached, a final-block is produced, containing all

state changes of each micro-block. This final-block is then added on the

chain of blocks, extending the blockchain. Finally, the final-block is then

broadcast to the shards so that each node is aware of the new global state,

ending the epoch [15].

Chapter 3. Technical Setup 14

Lookup Nodes

DS Committee

Shard 1 Shard 2
t1 t2

t3

t5
t6

t4

t1

t3 t4 t5

t2

t6

t1, t2 t3, t4, t5

t6

mb1 mb2

mb3

mb1 mb2 mb3 fb1

mb1

mb2

fb1fb1

FIGURE 3.1: Zilliqa network and transaction processing

Now that we have an understanding of how Zilliqa maintains a dis-

tributed global state, we can now explore Scilla and smart contracts.

3.2 Scilla

Zilliqa currently supports smart contracts written in Scilla. Scilla is an

intermediate, functional language designed for programming smart con-

tracts [12, 13]. It is an explicitly-typed language, aimed to ensure safety

in programming smart contracts and their transitions. For this report,

two key areas of Scilla will be relevant to concurrent execution of smart

contracts.

Firstly, Scilla’s library consists of only pure functions. In other words,

each library function has no side effects (like printing, changing field

Chapter 3. Technical Setup 15

variables, etc.) and will always return the same output given the same

input. For this reason, executing such library functions concurrently will

yield the same result. The only area of contention in executing smart con-

tracts concurrently arises from the smart contract’s defined functions, in

other words, the programmer’s code. Such mutable effects can be stati-

cally analyzed using CoSplit to determine the areas of memory a function

might touch.

Secondly, a smart contract in Scilla is made up of field variables and

transitions, or commonly known as functions. The identifier transitions

is derived from finite state machines. When invoking a transition of a

smart contract, the smart contract will transition between one state to

another. For instance, invoking Increment() in Figure 3.2 will increment

the counter in the smart contract.

scilla_version 0

contract Counter

(owner : ByStr20)

field counter : Uint128 = Uint128 0

transition Increment ()

c <- counter;

inc = Uint128 1;

new_c = builtin add c inc;

counter := new_c

end

FIGURE 3.2: Counter smart contract

Transitions can take in arguments, such as transfer amounts, strings,

but more importantly, they can receive addresses. Addresses could be

associated with user accounts or even other smart contracts. Such ad-

dresses could be used in message passing by the transition. Transactions

Chapter 3. Technical Setup 16

that invoke transitions who then send messages to other smart contracts

are considered multi-call transactions. Multi-call transactions are difficult

to determine the safety of concurrent execution. Indeed, we must know

how the called smart contract behaves, which by itself might call another

contract.

3.3 Implementation Intricacies

Before we begin making changes to the current implementation of trans-

action processing, we must first understand the current implementation.

We begin at the node level. First, a transaction packet is received by

the node. The transactions are then selected one-by-one for verification.

Verification checks if the account that invoked the transaction has enough

balance to run the transaction, if the account exists, and if the transaction

blockchain ID matches. Once verified, the node can begin running the

transaction.

Now, the node stores a snapshot of the current account 1 state. As the

transaction is being processed, each step takes some amount of gas. Gas

acts as a fee for the sending account to pay for the network to process the

transaction. If the transaction runs out of gas or runs into an error, the

account state is reverted back to the initial snapshot.

Then, the node starts up a local Scilla server. The server will interpret

the smart contract’s transition and execute the code. Since all the data

exists on the blockchain, the node must send the data over to the server

for execution. The smart contract is serialized and deserialized through

message passing via inter-process communication (IPC). While the Scilla

1For smart contract call transactions, this would be the current smart contract state

Chapter 3. Technical Setup 17

server interprets the executes the transition, any fields of data read/writ-

ten to are communicated to the node to reflect any changes in the smart

contract, via IPC. Once the transition finishes its execution in Scilla, the

server is then shut down.

Finally, at this point, all changes to the account would have been re-

flected and the transaction finishes processing. The node continues to

process any other transaction within the packet until either the gas limit

is consumed, the default transaction processing timeout is triggered, or

all transactions in the packet is processed.

After all transactions are processed, the node will create a micro-block

and match it against (or propose if leader) the shard leader’s proposed

micro-block. Once a consensus is reached through the PBFT protocol, the

shard leader will then broadcast the micro-block to the DS committee.

From this starting point, we will begin integrating sharding analysis

provided by CoSplit. At the point of receiving a transaction calling a

smart contract, CoSplit can perform static analysis to provide a memory

footprint of the of transition being called. The memory footprint provides

us important details, notably which transitions are single or multi-call

transitions and which data fields are accessed by the transition and how

they are accessed.

We will focus on only single-call transitions as multi-call transitions

are much harder to determine concurrent execution safety. Next, we will

use the static analysis for sorting paralellizable transactions based on the

memory footprint. Those with commutative effects or disjoint memory

accesses from other transactions are good candidates for concurrent exe-

cution.

Chapter 3. Technical Setup 18

T
im

e

Zilliqa Process

Verification

Snapshot

Serialization

Commit Changes

Write Changes

Transaction Received

Scilla Server Startup

Scilla Process

Deserialization

Execution

Server Termination

FIGURE 3.3: Transaction Processing IPC

With the knowledge on how Zilliqa processes transactions and exe-

cutes smart contracts, we can begin exploring the necessary changes for

concurrent execution. We will have to modify how Zilliqa sorts trans-

actions, how Zilliqa communicates with Scilla, and how Zilliqa nodes

arrive at a consensus.

19

Chapter 4

Incorporating Concurrency

In this chapter, we go through an outline of what implementation changes

needed to be made in order to achieve concurrent execution. For each

point, we expand the detailed changes and discuss the success, draw-

backs, and failures of each change.

4.1 Outline

As briefly discussed in Chapter 3 and seen in Figure 3.3, the sequential

transaction processing pipeline follows a few distinct steps. Expanding

on those steps, we begin an outline of each portion of the implementation

that needs to be changed.

1. Section 4.2: Transaction selection in its current implementation is

purely based on selecting the highest gas fee from the transaction

pool. Nodes will prioritize processing transactions with higher gas

fees to reap the larger rewards. In a concurrent setting, we must sort

transactions into parallelizable and non-parallelizable transactions.

2. Section 4.3: Mutual exclusion (mutex) locks were used to protect ac-

counts from being accessed by multiple threads concurrently. When

Chapter 4. Incorporating Concurrency 20

processing transactions concurrently, we can ignore those locks en-

tirely if all transactions work on disjoint states. In this way, each

thread will work on their own disjoint partition of the account state,

so no two threads will interfere with each other.

3. Section 4.4: The current implementation reverts any changes en-

tirely. That is to say, it reverts back to the screenshot prior to any

transaction execution. However, in a concurrent setting, multiple

threads might be accessing different parts of the account, so the en-

tire account cannot be reverted to the old snapshot provided one

thread fails. Instead, we must keep track of which changes each

transaction has made and solely revert those changes.

4. Section 4.5: Verifying a micro-block in a shard currently verifies

that each transaction processed matches those of the leader and are

processed in the same order. In a concurrent setting, we cannot

guarantee that each transaction is processed in the same order. As

such, a new way of composing and verifying micro-blocks must be

made.

4.2 Transaction Selection

Transaction selection is straightforward: transactions are removed from

the pool and added into a priority queue. When the transaction pool

is empty, the node removes a transaction from the priority queue and

begins executing the transaction. This continues in a loop until no trans-

actions exist or the gas used exceeds the gas limit.

Chapter 4. Incorporating Concurrency 21

void ProcessTransactions(int gas_limit) {

int gas_used = 0;

while (gas_used < gas_limit) {

if (! transaction_pool.isEmpty ()) {

Transaction t = transaction_pool.pop();

sorted_transactions.insert(t);

} else if (! sorted_transactions.isEmpty ()) {

verifyAndExecute(sorted_transactions.pop ());

}

}

}

FIGURE 4.1: Simplified ProcessTransactions()

For concurrent processing, we must consider a few issues. Firstly, not

all transactions can be executed concurrently. Since the report focuses

on concurrently executing smart contract transactions, all other transac-

tions (normal crypto transfers and contract deployment) are assumed to

be ran sequentially. While these types of transactions could potentially

be executed concurrently, we maintain their current execution pathway

as it will retain safety and simplicity.

Even after filtering out other transactions, not all smart contract ex-

ecutions can be executed concurrently. Some transitions in smart con-

tracts touch the same pieces of data regardless of who sends the transac-

tions. We are focused on transactions on disjoint states, so we filter these

transactions out. Furthermore, we want to avoid multi-call transactions,

as CoSplit static analysis is currently unable to determine memory foot-

prints of chained transition calls.

With these two conditions in mind, we can filter transactions into 2

priority queues. The first priority queue contains those transactions that

can be ran concurrently. The second contains transactions that must be

ran sequentially. From these two priority queues, we perform transac-

tions in batches and switch between each queue.

Chapter 4. Incorporating Concurrency 22

Suppose we receive too many transactions for a node to process in a

single epoch. If we naively process parallelizable transactions first before

processing sequential transactions, then the sequential transactions could

run into a starvation problem, therefore none of them would be executed.

By toggling between both priority queues in batches of some set size, we

eliminate the starvation problem.

void ProcessTransactions(int gas_limit) {

Threadpool threadpool(NUM_THREADS);

int gas_used = 0;

int batch_size = 32;

while (gas_used < gas_limit) {

if (! transaction_pool.isEmpty ()) {

Transaction t = transaction_pool.pop();

if (t.isContractCall () && t.isNonMultiCall ()) {

con_sorted_txn.insert(t);

} else {

seq_sorted_txn.insert(t);

}

} else if (! isConExec(batch_size)) {

verifyAndExecute(seq_sorted_txn.pop ());

txns_processed += 1;

} else if (isConExec(batch_size)) {

threadpool.addJob(

verifyAndExecute(con_sorted_txt.pop ());

txns_processed += 1;

}

}

threadpool.joinAll ();

}

FIGURE 4.2: Concurrent ProcessTransactions()

While this does work for sorting out single-call transactions from other

types of transactions, it does not filter out transactions that could be

affecting the same pieces of data. In line 7, t.isContractCall() and

t.isNonMultiCall() is a simplification of checking the static analysis.

To further improve the sorting, this call should also analyze which data

fields the transition would be affecting and if we can execute them con-

currently and join using any commutative effects.

Chapter 4. Incorporating Concurrency 23

For example, suppose a smart contract transition added some amount

to a map of accounts → balance called balances. The current check with

static analysis properly separates when all accounts calling this transition

are unique. What it does not check is if an account is calling the transition

twice. Calling it twice would be safe for concurrent execution assuming

the transition1 joins effects through commutativity of addition.

Transactions
Received

No

Yes

Is transaction a
contract call?

Start thread pool

Place transaction in
sequential priority

queue

No

YesIs transaction
parallelizable?

Place transaction in
concurrent priority

queue

Batch execution of
concurrent and

sequential
transactions

Yes

No

Did transaction
run

successfully?

Commit changes

Abort changes and
revert state

No

Yes

Are there any
more

transactions?

Run consensus in
shard and create

micro-block

Close thread pool

FIGURE 4.3: Flowchart of transaction processing in parallel
runtime

However, sorting such occurrences could be very expensive. Suppose

the con_sorted_txn priority queue currently contains transactions from

accounts a1, a2, . . . , an that all execute on disjoint states of the same smart

contract, but cannot be joined through a commutative operation. If we

1The transition/contract writer is required to provide the joining mechanism for
CoSplit static analysis of the smart contract

Chapter 4. Incorporating Concurrency 24

find that each account called the same transition through another trans-

action, we must remove all n transactions from the priority queue and

slot all transactions into the sequential priority queue. This would incur

a massive overhead proportional to the number of conflicting transac-

tions, which would likely be slower than naively running all transactions

sequentially. In such a case, we would require a more clever sorting al-

gorithm.

4.3 Mutex Locks

Mutex locks are currently used to lock entire accounts when processing

transactions. This is guaranteed safety as no two threads can access the

same account at the same time, ensuring no data races on reading and

writing data.

unique_lock <shared_timed_mutex >

g(m_mutexPrimary , defer_lock);

unique_lock <mutex > g2(m_mutexDelta , defer_lock);

lock(g, g2);

FIGURE 4.4: Account wide mutex locks

For concurrent execution of transactions, we must remove the locking

mechanism. In fact, for disjoint state transactions, locking is unnecessary.

Indeed, if two threads modify two different areas of the same account,

they will not interfere with each other and thus can safely be executed

concurrently.

Even if we ran transactions that affect the same state, if they have

some commutative operation to join effects of all transactions, then we

again would not need the locking mechanism. Instead, we would exploit

Chapter 4. Incorporating Concurrency 25

the commutative effect of the operation and write the combined change

into the account. This would require more bookkeeping and extra care

when executing such transactions.

if (! CONCURRENT_PROCESSING || !isConcurrent) {

unique_lock <shared_timed_mutex >

g(m_mutexPrimary , defer_lock);

unique_lock <mutex > g2(m_mutexDelta , defer_lock);

lock(g, g2);

}

FIGURE 4.5: Account wide mutex locks with check

We add a node-wide variable CONCURRENT_PROCESSING that would re-

tain the locking mechanism if the node chooses to run all transactions

sequentially. Concurrent processing is designed to be a user’s choice, so

we design the optional change to be simply toggle-able through chang-

ing a configuration setting. A second flag will be checked if the incoming

transaction is set to run concurrently or sequentially. If both values are

true, we skip the locks entirely.

4.4 Reverting Changes

On the event a transaction runs into an error or the gas limit has been

utilized, a node will revert any changes made to the account. Currently,

changes are made simply by reverting to an old snapshot taken right be-

fore any contract execution. In a sequential setting, this method is safe

since there will be no concurrent access to the same account. In a concur-

rent setting, we must be weary of any committed changes other threads

could have made. Indeed, we do not want to overwrite and erase any

committed changes. The user who sent the transaction would receive a

Chapter 4. Incorporating Concurrency 26

confirmation that the transaction succeeded, whereas any changes may

not have been recorded.

As discussed in Chapter 3, nodes run a local Scilla server in a separate

thread for contract execution through IPC. Communication between the

server and the node is performed through JSON remote procedure calls

(JSON-RPC). Messages are passed between the two processes, executing

both reads and writes to the contract state both in the local node and

Scilla.

Knowing this, we can intercept any reads to initial values and store

them within the final message, containing the receipt of executing the

contract in Scilla. When the node analyzes the receipt, we can determine

if the contract succeeded or failed. If a success was made, we keep all

changes made. Otherwise, we revert all changes made by writing the

original values (the read values in the receipt) to the current contract

state. In this method, we preserve changes made on disjoint areas within

the contract.

Firstly, we must change how revisions are made. RevertPrevState()

simply overwrites with the previous screenshot. We alter the function

such that it receives the contract execution receipt as an input. We then

iterate through the receipt’s fetched values and insert them back into cur-

rent contract state (or remove values if none was originally there).

Secondly, we must change the IPC messages between the Scilla server

and the node. Specifically, we change how the node handles messages

from the Scilla server. During contract execution, the Scilla server will

send messages to the node every time a value is read or written in a con-

tract field. For instance, a contract may read the value from a mutable

Chapter 4. Incorporating Concurrency 27

void ContractStorage2 ::

RevertPrevState(Json:: Value& receipt) {

for (const auto& key : receipt) {

if (key.get (). empty ()) {

t_stateDataMap.remove(key);

} else {

t_stateDataMap.insert(decodeBase64(key.get ()));

}

}

}

FIGURE 4.6: Modified contract reversion

map of user addresses → balances and later write to that same memory

location with a new balance.

For this reason, we can intercept these read messages to collect the

initial values of the contract pre-execution. These messages could then

be collected into a JSON receipt and passed to RevertPrevState() for

contract reversion, if necessary.

Since Zilliqa stores the contract state as a map from string → bytes,

then we structure the JSON receipt as a dictionary from string to bytes.

Each string key maps to a piece of data, including entire mutable struc-

tures. Suppose a contract’s address is zil1hgg7... and the contract has

a map named balances containing user account balances. Accessing a

value in balances is performed by appending the addresses and data

values with a network defined separator.

t_stateDataMap.find("zil1hgg7 ..." + SCILLA_INDEX_SEPARATOR +

"balances" + SCILLA_INDEX_SEPARATOR + "0x134a1b ...");

FIGURE 4.7: Data read from Zilliqa contract state

With these two changes, our receipts will simply be a JSON contain-

ing keys of memory locations and values of bytes converted to strings.

Any empty string implies that the field value was initially empty prior

Chapter 4. Incorporating Concurrency 28

to contract execution, so those values will be removed. This matches the

logic of Figure 4.6 and will properly revert the contract state of disjoint

state transactions.

{

"zil1hgg7 ...0 x16isBacker0x160x134a1b ..." : "true",

"zil1hgg7 ...0 x16balances0x160x134a1b ..." : ""

}

FIGURE 4.8: JSON receipt of read values

We can feed the new receipt into the modified RevertPrevState() to

revert the specified portions of data for that transaction execution. How-

ever, such changes are only limited to transactions with disjoint memory

footprints. Had 2 transactions acting on mutual areas of memory been ex-

ecuted with one requiring reversion, we cannot ensure that the succeed-

ing transaction changes are committed. Indeed, this reversion scheme

could allow a single transaction to be nullified by overwriting the mem-

ory value with the original. Reversion for transactions with commutative

effects require much more intricacy, requiring the reversion to perform a

negation rather than a value overwrite.

4.5 Micro-block Verification

In a sequential setting, micro-block verification simply checks if the trans-

actions executed are the same as the leader’s execution and follow the

same execution order. In a concurrent setting, we cannot guarantee that

transactions orders are the same. Since we divide our transactions into

concurrent and sequential executions, we must devise a new verification

method containing both methods of execution.

Chapter 4. Incorporating Concurrency 29

For the sequential executions, we can continue with checking execu-

tion order of a set of transactions. Indeed, we should arrive at the same

state shard-wide after executing transactions in the same order. For con-

current executions, we instead should check set equality. Since any per-

mutation of a set of concurrently executed transactions is valid, then set

equality will verify that states are in consensus shard-wide.

So, we must also now tag each transaction by their execution method.

From this, we separate those executed sequentially and concurrently and

verify each set through their respective methods. Additionally, set equal-

ity on concurrent transactions will also apply for transactions with com-

mutative effects. Indeed, commutativity implies that transaction order-

ing does not matter.

With the proposed changes, we can begin implementation and in-

corporating concurrency into Zilliqa transaction processing. By altering

transaction selection and batch processing, account-wide mutex locks for

concurrent access, state reversion for failed executions, and micro-block

formation and consensus, we can begin testing and evaluating processing

disjoint memory footprints.

30

Chapter 5

Preliminary Evaluation

In this chapter we begin running and evaluating the proposed changes

to Zilliqa for parallel processing of smart contract transactions. We first

explore the testing framework and environment then evaluate how the

network performs.

5.1 Testing Framework

To begin testing our proposed implementation, we must first construct

some compatible transactions. The Crowdfunding smart contract (see

Appendix A) provides the transition Donate. On a successful donation,

the smart contract will add the sending account to the field map backers

and insert their donation amount. As such, Donate is a good candidate

for our transactions each transaction will have a disjoint state, assuming

all transactions have unique accounts.

Before we send these transactions, we first must create and fund ac-

counts in Zilliqa to send the transactions and deploy the smart contract.

We create 100 transactions to transfer some amount of Zilliqa’s cryptocur-

rency (ZIL) to each account so they can interact with the smart contract.

Chapter 5. Preliminary Evaluation 31

Finally, we send a one more transaction to deploy the smart contract to

the network. Since all these transactions are not smart contract calls, they

will all be executed sequentially. They are merely intended to setup the

network state.

Once each account has been funded and the contract deployed, we

can begin by sending our transactions to call the Crowdfunding smart

contract. We construct 100 transactions, each having a unique sending

account, all sending 100 ZIL. By the time all transactions are completed,

we expect the backers field to contain 100 mappings from accounts →

amount donated, totalling to 100, 000 ZIL donated.

To compare the performance of concurrent versus sequential process-

ing, we set a timer prior to running the 100 smart contract calls. We stop

the timer when we receive a response from the network that all transac-

tions sent out are completed. Doing this both in the concurrent and se-

quential setting will provide some comparison to measure performance.

5.2 Network Structure

Testing concurrent execution of transactions requires a custom testing

network (testnet) to run transactions. Initially, the testnet was hosted on a

single machine, with each node represented virtually through a separate

process for each node. The network consisted of 21 nodes: 5 nodes will

form the DS committee, 15 nodes will form 3 different shards of 5 nodes

each, and 1 lookup node. The next step brought testing into a distributed

network. Now, each node is its own separate machine. Each node will

not interfere with one other and will not compete for the same resources

on a single machine.

Chapter 5. Preliminary Evaluation 32

5.3 Evaluation

Overall, after running tests, there was partial success. The nodes in the

network managed to startup different threads and run contracts concur-

rently. Progress was made and some transactions were processed suc-

cessfully, however there were many areas of failure causing failed trans-

actions.

Processing Time. Tests showed that processing transactions took much

longer than sequential processing. This is not due to the increased over-

head of spawning new threads or sorting transactions, but rather due to

implementation bugs causing failed transactions, requiring later epochs

to retry processing the failed transactions. Nevertheless, sequential pro-

cessing showed to process all 100 transactions in as little time as 1 minute.

Concurrent processing took much longer and sometimes ran indefinitely.1

Constructing the Thread Pool. In regular use cases of a thread pool,

we construct the thread pool when we want to use it, feed it jobs for

processing, and terminate all threads and the thread pool when all jobs

are completed. Naively, the proposed implementation does as such. The

advantage is that we ensure each transaction is processed entirely before

proceeding to verification.

However, repeatedly recreating and tearing down a thread pool is

more expensive than maintaining the pool indefinitely. For users who

wish to enable concurrent processing, indefinitely maintaining the pool

1Tests with only 10 transactions showed 1 minute for sequential processing and 24
minutes for concurrent processing

Chapter 5. Preliminary Evaluation 33

would be advantageous as they would likely be concurrently process-

ing transactions for future epochs and it would only incur a one-time

overhead cost of starting up the pool. While no transactions are being

processed, sleeping threads would take minimal space and processing

power.

To improve the design, we can create the thread pool as soon as the

node is starting up. By running the thread pool on startup, we only incur

the thread pool construction overhead once. Threads will sleep until they

are called to run transactions. To ensure that all threads complete all

of the outstanding workload, we set a counter that atomically increases

each time a transaction has been processed. All processing is complete

when our counter matches to initial number of transactions received, or

transaction processing timeout is reached.

Shared Scilla IPC Handler. The Zilliqa client that handles Scilla IPC is

a singleton object. The object will be assigned the address of the contract

accesses and executes the transition called. In the sequential setting, this

works as only one transaction is being processed at a time. However,

in the concurrent setting, multiple threads would be accessing the same

object. Concurrent usage can lead to overwrites and loss data. As such,

many transactions were failing due to missing or overwritten data.

One possible change is to alter the Zilliqa client so that it can han-

dle multiple accounts. We can create a mapping from transaction ID →

contract address. This way, each thread will only consume messages that

correspond to their current transaction ID. Another way is to spawn mul-

tiple instances of this singleton object, so that each thread will be assigned

their own, unique client.

Chapter 5. Preliminary Evaluation 34

Shared usage of Scilla Server. Similar to the previous source of bugs,

the Scilla server also caused issues when running concurrently. A single

server is started to interact with Zilliqa and process the contract. In a

concurrent setting, the server would be responding to multiple messages

pertaining to different contract calls. These messages then cause errors

as messages intended for one transaction may be consumed by a thread

assigned to a different transaction.

Very similar to the Scilla IPC handler, we can either create multiple,

local Scilla servers, or restructure the server such that it can handle mul-

tiple messages at once. The former is much simpler as each thread can

be assigned a unique ID that allows exclusive access to their respective

server. The latter requires larger restructuring of how Scilla servers run

and the implementation will be quite complex.

Overall, concurrent processing is very much possible, but the im-

plementation is very complex. Many parts of the current implementa-

tion require restructuring and major overhauls. Concurrent processing

is promising but there will be a lot of necessary future improvements to

create a stable system.

35

Chapter 6

Discussion

6.1 Source Code

The development branch of Zilliqa described in this report is based on

Zilliqa 7.2.0. The developmental branch integrates smart contract shard-

ing based on findings from CoSplit. Instructions to run the local test-

net can be found in the README. To enable concurrent processing, tog-

gle <CONCURRENT_PROCESSING> in constants_local.xml to true before

building and running Zilliqa. The source code can be found on https://

github.com/Zilliqa/zilliqa/tree/feature/concurrent_execution.

6.2 Encountered Issues

This report has shown that concurrently processing transactions is feasi-

ble but has a long way till production deployment. Testing for function-

ality and reliability is, unfortunately, restricted to a distributed setting. In

the local tests,1 a single processor was unable to keep up with the demand

of several virtual nodes. A single processor would be shared amongst

1Local tests were initially done on a machine with AMD Ryzen 3700X, 16GB
3600MHz RAM, running WSL2

https://github.com/Zilliqa/zilliqa/tree/feature/concurrent_execution
https://github.com/Zilliqa/zilliqa/tree/feature/concurrent_execution

Chapter 6. Discussion 36

all nodes, both running transactions and spawning new threads for each

node. As such, progression through solely local testing was limited.

Fortunately, the Zilliqa development team provided us their testing

framework, allowing us to spin up separate nodes in Amazon Web Ser-

vices. By having separate machines running, we truly tested on a mock

of an actual Zilliqa network. This allowed each node to have their own

resources, removing any competition for processing time.

Other issues arose from the complexity of understanding, in detail,

the relevant parts that need to be changed, as well as the entire sys-

tem. Adding concurrency required knowledge on creating local network

sockets, understanding IPC through JSON-RPC, and understanding the

points of transaction failure. The scope of changes extend beyond just

modifying Zilliqa. It requires modifying how Scilla servers handle mes-

sages and interact with Zilliqa.

6.3 Future Work

There are lots of improvements beyond the proposed fixes in Chapter 5.

The immediate next step is to make those changes and ensure that Zilliqa

can steadily run transactions concurrently. Briefly, here is a list of steps to

be taken to enable concurrent smart contract processing:

• Persistent thread pool at node startup to minimize overhead.

• Allow the Zilliqa to Scilla IPC to handle multiple contracts at once,

tying each message to a transaction ID.

• Reconfigure Zilliqa to startup multiple instances of the Scilla server,

one for each transaction.

Chapter 6. Discussion 37

• Ensure that gas accounting is update atomically for shared access

between threads.

Next, a new improvement would be adding support for transactions

with commutative effects. This entails a much more complicated smart

contract state reversion protocol, as well as a more advanced transaction

batch partitioning algorithm. Both would heavily rely on CoSplit static

analysis.

One possible avenue would be exploring adding concurrency to the

Ethereum network. A static analysis for smart contracts in Solidity could

provide similar sharding techniques for Ethereum 2.0. From there, the

same static analysis can be used for determining safe parallelizable trans-

actions on the local node.

6.4 Conclusion

In this report, we discussed the scalability challenges blockchain proto-

cols face and the motivations of supporting locally-parallel processing of

smart contract transactions. We proposed a potential solution for inte-

grating concurrency that relies on disjoint memory footprints of transac-

tions and commutative effects of smart contract transitions through static

analysis. By providing some insight and initial implementation on incor-

porating concurrency in Zilliqa, we have taken a step towards a reliable

concurrent transaction processing.

38

Bibliography

[1] Shehar Bano et al. “Consensus in the age of blockchains”. In: arXiv

preprint arXiv:1711.03936 (2017).

[2] Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. “A true

concurrent model of smart contracts executions”. In: CoRR abs/1905.04366

(2019).

[3] Hung Dang et al. “Towards scaling blockchain systems via shard-

ing”. In: Proceedings of the 2019 international conference on manage-

ment of data. 2019, pp. 123–140.

[4] Thomas D. Dickerson et al. “Adding Concurrency to Smart Con-

tracts”. In: CoRR abs/1702.04467 (2017).

[5] Ethereum. ERC-20 Token Standard. ethereum.org, Dec. 2020. (Visited

on 03/25/2021).

[6] Ethereum. Ethereum 2.0 (Eth2) vision. ethereum.org, 2020.

[7] Amrit Kumar, George Pîrlea, and Ilya Sergey. “Practical Smart Con-

tract Sharding with Ownership and Commutativity Analysis”. In:

PLDI (2021).

[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech.

rep. Manubot, 2019.

Bibliography 39

[9] George Pîrlea. Ethereum smart contract usage in 7 graphs - George Pîr-

lea. pirlea.net, Jan. 2020. (Visited on 03/25/2021).

[10] Vikram Saraph and Maurice Herlihy. “An Empirical Study of Spec-

ulative Concurrency in Ethereum Smart Contracts”. In: CoRR abs/1901.01376

(2019).

[11] Scalability. Bitcoin Wiki, 2020. (Visited on 11/12/2020).

[12] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. “Scilla: a Smart

Contract Intermediate-Level LAnguage”. In: CoRR abs/1801.00687

(2018).

[13] Ilya Sergey et al. “Safer Smart Contract Programming with Scilla”.

In: Proc. ACM Program. Lang. 3.OOPSLA (Oct. 2019).

[14] Nick Szabo. “Formalizing and securing relationships on public net-

works”. In: First Monday (1997).

[15] Zilliqa Team. The Zilliqa Technical Whitepaper. 2017. (Visited on 11/12/2020).

40

Appendix A

Crowdfunding Smart Contract

scilla_version 0

(* Omitted library functions *)

contract Crowdfunding
(owner: ByStr20 , max_block: BNum, goal: Uint128)

field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

transition Donate ()
blk <- & BLOCKNUMBER;
in_time = blk_leq blk max_block;
match in_time with
| True =>

bs <- backers;
res = check_update bs _sender _amount;
match res with
| None =>

msg = {_tag : ""; _recipient : _sender;
_amount : Uint128 0; code : already_backed_code};

msgs = one_msg msg;
send msgs

| Some bs1 =>
backers := bs1;
accept;
msg = {_tag : ""; _recipient : _sender;

_amount : Uint128 0; code : accepted_code};
msgs = one_msg msg;
e = {_eventname : "DonationAccepted";

donor : _sender; amount : _amount};
event e;
send msgs

end
| False =>

msg = {_tag : ""; _recipient : _sender;
_amount : Uint128 0; code : missed_deadline_code};

msgs = one_msg msg;
send msgs

end
end

	Acknowledgements
	Abstract
	Introduction
	Background
	Nakamoto Consensus
	Concurrency for Increasing Throughput
	Recent Works

	Technical Setup
	Zilliqa Blockchain
	Scilla
	Implementation Intricacies

	Incorporating Concurrency
	Outline
	Transaction Selection
	Mutex Locks
	Reverting Changes
	Micro-block Verification

	Preliminary Evaluation
	Testing Framework
	Network Structure
	Evaluation

	Discussion
	Source Code
	Encountered Issues
	Future Work
	Conclusion

	Bibliography
	Crowdfunding Smart Contract

