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We present an approach to automatically synthesise recursive predicates in Separation Logic (SL) from concrete
data structure instances using Inductive Logic Programming (ILP) techniques. The main challenges to make
such synthesis effective are (1) making it work without negative examples that are required in ILP but are
difficult to construct for heap-based structures in an automated fashion, and (2) to be capable of summarising
not just the shape of a heap (e.g., it is a linked list), but also the properties of the data it stores (e.g., it is a sorted
linked list). We tackle these challenges with a new predicate learning algorithm. The key contributions of our
work are (a) the formulation of ILP-based learning only using positive examples and (b) an algorithm that
synthesises property-rich SL predicates from concrete memory graphs based on the positive-only learning.
We show that our framework can efficiently and correctly synthesise SL predicates for structures that
were beyond the reach of the state-of-the-art tools, including those featuring non-trivial payload constraints
(e.g., binary search trees) and nested recursion (e.g., n-ary trees). We further extend the usability of our
approach by a memory graph generator that produces positive heap examples from programs. Finally, we
show how our approach facilitates deductive verification and synthesis of correct-by-construction code.
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1 Introduction

Separation Logic (SL) is a popular Hoare-style formalism for specifying and verifying imperative
programs that manipulate mutable pointer-based data structures [50]. SL has been successfully
applied to a wide range of applications, including program verification [3, 30], static analysis [11],
bug detection [37], invariant inference [20, 38], program synthesis [56, 67], and repair [49, 65]. The
key to the practical success of SL is its ability to enable compositional reasoning about programs in
the presence of potential pointer aliasing by exploiting the locality of common heap-manipulating
operations. To enable expressive specifications, Separation Logic offers a powerful mechanism to
declaratively describe the shape and data properties of linked heap-based structures, such as lists
and trees: inductive heap predicates. Unsurprisingly, defining precise and useful inductive predicates
for non-trivial data structures in general requires a good grasp of the structure’s internal invariants.
Most existing SL-based reasoning frameworks require defining predicates manually; a few come
with a set of pre-defined predicates for the most commonly used data structures [12, 38],—thus,
limiting the ability of those approaches to verify or generally utilise data-specific program properties,
such as, e.g., correctness of searching an element in a binary search tree.
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The aim of this work is to offer a methodology for automatically synthesising inductive predicates
for linked structures, where not only the shape but also the properties of the stored data (e.g., a binary
tree being balanced) would be captured. To achieve this goal, we develop an approach for inferring
inductive SL predicates by synthesising them from memory graphs, i.e., concrete examples of data
structure memory layouts, as produced by programs that generate them. Our work is closely related
to two research themes: (1) synthesising formal representations of data structures [8, 28, 43, 71], and
(2) using machine learning to infer data structure invariants [10, 42, 64]. Existing approachers either
impose specific restrictions on the inputs of the synthesiser by, e.g., requiring functions constructing
the data structure [43, 71] or a large number of both positive and negative examples [42, 64]; or
produce weaker specification, e.g., only inferring the structure shape, but not its properties [8, 28].

To deliver an effective solution to this problem, our key idea is to consider inductive heap
predicates as logic programs in a Prolog-style language, and concrete memory graphs as logic
facts. This perspective allows us to cast predicate synthesis as a classic instance of Inductive Logic
Programming (ILP)—synthesising a logic program by generalising concrete examples and facts
about concrete data instances that are also defined as logic programs [16, 45]. That said, to harness
the power of ILP for synthesising SL predicates, we have to overcome the following two challenges:

C1 For effectively learning logic programs, ILP requires both positive and negative examples; the
representative (i.e., non-trivial) negative examples are essential to ILP (cf: Sec. 2.2) but difficult
to acquire without a human in the loop (cf. Sec. 5 for a discussion).

C2 Synthesis of predicates in Separation Logic with arbitrary data constraints features a large
search space, making it difficult to be efficient.

To address the challenge C1, we propose a novel positive-only learning approach to infer the most

specific logic predicate from a set of positive examples by incorporating as many of the available

(yet non-redundant) pre-defined constraints as possible. This is achieved by (1) eliminating logically

redundant restrictions featured in generated predicate candidates (as, e.g., the last one in the series

A < B, B <C, A < C)and (2) by introducing the notion of specificity that selects a locally-optimal

inductive SL predicate from a set of candidates with no redundancies.

Having phrased the inductive heap predicate synthesis as a search for a local optimum, we
inevitably face its large computational complexity, which brings us to the challenge C2: efficiency
of the search. We address this challenge by exploiting the nature of our target domain, i.e., Sepa-
ration Logic. The key insight that allows us to prune many non-viable candidates is to perform
early detection of invalid combinations of heap constraints, e.g., those implying that the same
symbolic heap location can be null and not null at the same time. Combined, our solutions to
the challenges C1 and C2 deliver an approach for effective and efficient inductive synthesis of
inductive heap predicates from concrete memory graphs.

In summary, this work makes the following contributions:

o The first inductive synthesis approach of inductive heap predicates with arbitrary data constraints,
requiring only positive examples of memory graphs, achieved by (1) positive-only learning for
ILP, (2) exploiting the domain-specific properties of SL.

e Sippy—an automated tool for synthesising SL predicates from memory graphs, showcasing the
effectiveness of our approach for synthesising non-trivial predicates in a series of benchmarks.

o Grippy—a memory graph generator that can automatically produce positive examples for the
predicate synthesis via Sippy, given data-manipulating programs, which it uses as test oracles.

e Demonstration of utility of Sippy by (a) learning the predicates for verification from real-world
heap-manipulating programs by obtaining memory graphs automatically via Grippy, and (b) using
the synthesised predicates for automated deductive synthesis.
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Fig. 1. Memory layout of a singly linked list.

2 Overview and Key Ideas

In this section, we provide a brief outline of the basics of Separation Logic (SL) and its inductive
predicates. Next, we explain how to use the existing ILP system Popper [18] to synthesise such
predicates from both positive and negative examples, and how we handle with learning from positive
examples only. We conclude with the high-level workflow of our SL predicate synthesiser Sippy.

2.1 Inductive Predicates in Separation Logic

Consider a schematic memory layout depicted in Fig. 1 corresponding to a singly linked list (SLL).
The list has a recurring structure with each of its elements represented by a consecutive pair of
memory locations (the “head” one referred to by a pointer variable x), the first one storing its
data value (or payload) v and the second containing the address y of the tail of the list. Knowing
these shape constraints, the entire list can be traversed recursively by starting from the head and
following the tail pointers.

The idea of defining the repetitive shape of a heap-based linked structure, such as SLL, is
precisely captured by Separation Logic and its inductive (i.e., well-founded recursive) predicates.
One encoding of an SLL heap shape via the SL predicate s11 is given below:

pred sll(loc x, set s) where

| x=0= {s={}; emp }

| x # 0 = {s={v}Usl; x> v*x (x+t1) > y x sll(y, s1) }
The predicate s11 is parameterised by a location (i.e., pointer variable) x and a payload set of the
data structure s; it holds true for any heap fragment that follows the shape of a linked list (and
contains no extra heap space). What exactly that shape is, is defined by the two clauses (a.k.a.
constructors) of the predicate. The first one handles the case when x is a null-pointer, constraining
the payload set s of the list to be empty ({}); the same holds for the list-carrying heap—which is
denoted by a standard SL assertion emp.! The second clause describes a more interesting case, in
which x is not null, and so the payload can be split to an element v and the residual payload s1 (for
simplicity of this example, we assume that all elements of the list are unique). Furthermore, the
heap carrying the list is specified to have two consecutive locations, x and x + 1, storing v and
some (existentially quantified) pointer value y, as denoted by the SL points-to notation . Finally,
the rest of the SLL-carrying heap is the recursive occurrence of the same predicate s11(y, s1)
(with different arguments), thus replicating the recursive structure of the layout from Fig. 1.

The logical connective * appearing in the second clause of the s11 predicate is known as the
separating conjunction (sometimes pronounced “and separately”) and is the main enabling feature of
Separation Logic [50]. It implicitly constrains the symbolic heaps it connects in a spatial assertion
to have disjoint domains. Specifically, in this example it implies that the heap fragment captured

IFor simplicity, our examples use mathematical sets to encode the data payload, assuming uniqueness of the elements,
instead of, e.g., an algebraic list. This is not a conceptual or practical limitation of our approach, as we will show in Sec. 6.1.
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pos(srtl(p11,[1,2,3]1)). pos(srtl(p21,[2,4,6,9]1)).

% Encoding of the first memory graph from Fig.2
next(p11, p12). next(p12, p13). next(p13, null).
value(p11, 1). value(p12, 2). value(pl13, 3).

% Encoding of the second memory graph from Fig.2
next(p21, p22). next(p22, p23). next(p23, p24). next(p24, null).
value(p21, 2). value(p22, 4). value(p23, 6). value(p24, 9).

Fig. 2. Positive examples of sorted list heap graphs, with the corresponding logic encoding.

by s11(y, s1) does not contain memory locations referred to by either x or x+1. Such disjointness
constraint is what makes it possible to avoid extensive reasoning about aliasing when using SL
specifications, making them modular, i.e., holding true in the context of any heap that is larger than
what is affected by the specified program.

2.2 From Memory Graphs to Heap Predicates

Our goal is to synthesise inductive SL predicates from examples of concrete memory graphs. To
do so, we phrase both SL predicates and the memory graphs that satisfy them in terms of Logic
Programming. For example, the Prolog predicate below defines a sorted singly linked list:

srtl(X, S) :- empty(S), nullptr(X).

srtl(X, S) :- next(X,Y), value(X,V), srtl(Y,SY), min_set(V,S), insert(SY,V,S).
The predicate above defines a sorted singly linked list by enhancing the ordinary singly linked
list predicate with the constraint min_set(V, S) that states that the value V is equal to the smallest
value in the set S. The insert(S1, V, S) and empty(S) (i.e., s == {v} ++ slands == {} in the SLL
example) are defined using Prolog built-in predicates that correspond to ordinary functions in
set theory. Other Prolog-style predicates used in the synthesised SL solutions are data-structure
specific and are extracted from the user-provided memory graphs. We leave till later (Sec. 4.2) the
issue of ensuring that a Prolog predicate is also a valid SL predicate in the sense that it does not
use SL connectives in a contradictory way, allowing one to derive falsehood from its definition.

The top of Fig. 2 shows two memory graphs of sorted lists that can be used to synthesise srt1().
For a more natural representation in terms of Logic Programming, we use Java-style naming of
structure components, ie., fields such as value and next instead of C-style integer pointer offsets;
these fields provide the data-specific predicates (i.e., next() and value()) to the synthesiser. In the
bottom of Fig. 2, we provide the corresponding logic representations of the inputs to the synthesiser,
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consisting of positive examples (i.e., instances of the sought predicate that are expected to be true),
and the background knowledge (i.e., encoding of the corresponding memory graphs) that should be
used to derive those examples using predicate candidates. Given all this information, a synthesiser
should be able to generate the predicate srt1() that satisfies the positive examples. That is, using the
traditional program synthesis from input-output pairs as an analogy [27], the facts in background
knowledge (e.g., next(p11, p12)) are inputs, the examples (e.g., pos(srtl(p11, [1,2,31))) are the
outputs, and the solution is the program (i.e., the predicate) to be synthesised.

2.3 Predicate Synthesis via Answer Set Programming

We observe that the synthesis of SL predicates can be regarded as a Logic Programming synthesis
task, studied extensively in the field of Inductive Logic Programming (ILP) [17, 45]. In ILP, the
synthesis of definition is done by generating hypotheses (i.e., predicates) and testing them against the
provided examples. Efficient generation of hypotheses in ILP is typically implemented using Answer
Set Programming (ASP) [23, 34], a constraint solving-based search-and-optimisation methodology
that allows for effectively pruning the search space of candidate definitions and is used in many
state-of-the-art ILP systems: ASPAL [13], Popper [18], and ASPSynth [5].

To see how ASP can be used for synthesising logic predicates, we first provide a brief introduction
to its principles using very basic examples. Considered a declarative logic programming paradigm,
ASP can be regarded as a syntactic extension of Datalog, but with a different semantics called stable
model semantics [26]. The output of an ASP program is a set of models (i.e., so-called answer set)
that satisfy the program constraints. A (normal) ASP program consists of a set of clauses that are
composed of a head (on the left of «—) and a body (on the right of <) as:

a «— by,... by, —cy, ..., "cCp.
which can be read as "if by, ... b,, are true and cy, ..., c, are false, then a is true". The statements
a, b;, c; are called literals and are declared in the format of pred_name(X1, ..., Xn) (i.e., a predicate

with arity n). A clause is called an integrity constraint when its head (i.e., the statement on the
left-hand side of «<—) is empty, which means it is inconsistent if the body is true; a clause is called a
fact when its body is empty, which means the head is always true.

Instead of describing the formal definition of a stable model, we show simple examples of ASP
program and the corresponding answer sets below:

No. ‘ ASP Program ‘ Answer Sets
1 a - b. b. {a,b}

2 a :- not b. b. {b}

3 a :- not b. b :- not a. {a},{b}

4 a :-notb. b :-nota. :-a. | {b}

The arity of the literals a and b is 0, and :-, not in the programs mean <« and — correspondingly.
The programs in the table above and their answer sets should be interpreted as follows.

o Program 1 is a simple program with a rule (general clause) a :- b and the fact b postulating that
b is true. The answer set is {a, b} meaning that a and b can be true together, given the constraints.

e Program 2 is similar to Program 1, but with the rule a :- not b instead, which means a is true
when b is false. The answer set is {b}, no clause is making a true.

e Program 3 is a program with two rules. The answer set is {a},{b} because a is true when b is
false, and b is true when a is false, so the answer set is the combination of the two cases.

e Program 4 is extended from Program 3 with another clause, that is an integrity constraint : - a
forcing a to be false. The answer set is {b} because b is true when a is false, and the program is
consistent only in this case (in contrast with Program 3).
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As Program 4 demonstrates, the integrity constraint can be used to prune the answer sets—a very
useful feature for synthesis tasks (more discussion on ASP versus SMT is in Sec. 7).

Each program above can be regarded as an enumeration in the powerset of the set with two
elements, a and b, returning all sets that satisfy the relations (i.e., the ASP clauses) between the
elements. An ILP system, such as Popper [18], relies on an ASP solver to encode the enumerative
search among all possible combinations of literals to synthesise logic predicates.

As a concrete example of ILP via ASP, consider synthesising the definition of a predicate
plus_two(A, B) using six literals: succ(A, A),succ(A, C), succ(B, A), succ(B, B),succ(B, C),and
succ(C, B) to build the body of the predicate, with examples plus_two(1,3) and plus_two(2,4).
An ASP-based synthesiser would try to find a definition of plus_two(A, B) as a suitable subset
of all their 2° = 64 possible combinations. While doing so, it would also make use of the natural
restrictions that can be encoded as integrity constraints, such as (1) no free variable is allowed in
the body (hence {succ(A, B), succ(C, B)}is not a valid answer set because C is free), and (2) all
input variables A and B should appear in the body (hence {succ(B, C)} is not a valid synthesis
candidate). As we will show, such constraints are also useful for encoding the domain-specific
knowledge about validity of SL predicates, and can be efficiently solved by ASP solvers.

Moreover, the incrementality of ASP solvers make it possible to constrain the search space
continuously [25]. For instance, assume the following hypothesis is obtained during the search:

plus_two(A, B) :- succ(A, A), succ(B, B).

After testing it by Prolog against the examples, Popper finds that none of the provided positive
examples can be derived using this solution. As the result, other hypotheses that are more specialised
(i.e., more constrained in the bodies) than it, such as the definition of plus_two() below.

plus_two(A, B) :- succ(A, A), succ(B, A), succ(B, B).

will also entail no positive examples. To this end, with the help of ASP, a classic ILP performs
search for a candidate hypothesis that passed all tests and has the smallest size (i.e., number of
literals in the predicate). Such optimal hypothesis for our example is the synthesised solution:

plus_two(A, B) :- succ(A, C), succ(C, B).

2.4 Synthesis without Negative Examples

The classic ILP comes with an important limitation: in general, it requires both positive and negative
examples to learn a predicate. As we explain below, the need for the latter kind of examples makes
it challenging to employ ILP as-is as a pragmatic approach for synthesising SL predicates.

Why Negative Examples are Necessary in ILP. Let us get back to our examples with synthesising
a sorted singly linked list predicate from positive examples of memory graphs in Fig. 2. With the
conventional ILP, the learned hypothesis by Popper is as follows, and it is not what we need:

srtl(X, S) :- empty(S), nullptr(X).

srtl(X, S) :- next(X, Y), value(X, V), insert(SY, V, S), srtl(Y, SY).

The learned hypothesis does not define a sorted list, but an ordinary (unsorted) singly linked list.
The reason is: in the absence of the negative example, this is a consistent hypothesis that is smaller
in size than the correct definition of srtl. So if we want to learn the correct predicate, we need to
provide negative examples that are inconsistent with the incorrect hypothesis, such as

neg(srtl(p11, [1,2,31)).

% Encoding of a negative example

next(n1l, n2). next(n2, n3). next(n3, null).

value(nl, 2). value(n2, 1). value(n3, 3).
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the most general hypothesis
(positive examples only)

the most general hypothesis
(positive and negative examples)

the most specific hypothesis
(positive examples only)

Fig. 3. The effect of positive and negative examples on search.

which is a singly linked but not sorted list. To summarise, when performing synthesis via classic
ILP, negative examples are necessary to avoid the predicate being too general.

Challenges in Obtaining Negative Examples. What makes things worse is that ILP systems rely
on representative negative examples to correctly prune the generality, which are hard to obtain
automatically. The difference between positive and negative examples is that, a good set of positive
examples (Pos) only needs to guarantee that all instances follow the predicate (%), while a good set
of negative examples (Neg) need to be much more elaborated, so it could cover any possible way in
which the predicate can be wrong. This difference is expressed by the following quantifications:

Ve* € Pos,P(e") vs. VP’ C P,Je” € Neg,P’'(e”) A=P(e”)

That is, unlike a good positive example set, which is only quantified over the examples, a good
negative example set is quantified over the predicates and the examples, which makes it much harder
to achieve. As a concrete example of this phenomenon, imagine learning a predicate for balanced
binary trees. A good set of negative examples would contain instances where (a) the height of the
left subtree is too large, (b) the height of the right subtree is too large, (c) the imbalance manifests
recursively in both left and right subtrees. Without all these rather specific negative instances, it is
possible to learn a predicate with a constraint on the subtrees height(Left) <= height(Right) + 1,
which is not wrong but is imprecise. This is not just an issue for SL predicates domain, but also
for general logical learning, witnesses by the fact that in existing ILP benchmarks [18, 62] and
specification mining framework [44] high-quality negative examples are often crafted manually.

This state of affairs brings us to the two key novel ideas of this work that enable efficient synthesis
of SL predicates only from positive examples.

24.1 Key ldea 1: Learning with Specificity. As discussed above, without negative examples a
solution delivered by Popper, while valid, may not be specific enough. To provide more intuition
on the space of possible design choices in finding the best solution, together with the reason why
positive-only learning is possible, let us consider the illustration in Fig. 3. The “up”/“down” in this
figure (informally) means “more general/specific”, where the top/bottom are constant True/False
(i.e., the lattice is defined by subsumption [46]). Providing two positive examples, p1 and p2, restricts
the search space for the solution hypothesis to the intersection of their own spaces, with the most
general one chosen as the solution. Adding a negative example n1 provides more restrictions, thus
allowing for more specific most-general solution. From this diagram, one can see that, even without
a negative example, we can have a tighter [4] solution (i.e., with stronger restrictions given the
same number of clauses) if we consider not the most general, but the most specific candidate in the
intersection of the search spaces defined by p1 and p2 (generally, positive examples only).
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Therefore, the basic idea of our positive-only learning is: to learn the most specific predicate
admitting all provided examples. The only problem is: what is the definition of “specificity”? As the
opposite of “generality” (the program with the smallest number of constraints), it is not practical to
take the largest hypothesis as the most specific, as it would lead to redundant constraints. As an
example, consider the following valid formulation of the sorted linked list predicate that requires,
in its second clause, that T = SY U{V} and S = T U {V}:

srtl(X, S) :- empty(S), nullptr(X).
srtl(X, S) :- next(X, Y), value(X, V), srtl(Y, SY), insert(SY, V, T), insert(T, V, S).

Clearly, the last conjunction insert(T, V, S) is redundant and can be removed because of the
properties of the insert(...) predicate.

To eliminate such candidates with redundancies, our approach for positive-only learning encodes
intrinsic logical properties of customised predicates to minimise the generated SL predicates.
Our tool comes with a pre-defined collection of properties of predicates for common arithmetic
(e.g., calculation, comparison) and set operations (e.g., insertion, union) that are included into the
synthesis automatically. More customised predicates can be added by the user (with additional
clause minimisation rules). After performing the minimisation hinted above (detailed in Sec. 3.1),
we define the specificity of a predicate candidate based on its size w.r.t. other available candidates
(cf Sec. 4.3). The solution that is locally-optimal (i.e., the strongest in the search space) will be
adopted as the most specific predicate that is implied by all the positive examples.

2.4.2 Key ldea 2: Separation Logic-Based Pruning. The domain of our synthesis, i.e., Separation
Logic, provides effective ways to prune the search space and accelerate the synthesis process.
Postponing the detailed explanation of the optimisations until Sec. 4, as an example, consider an
important property the separating conjunction stating that the fact x > a x y - b implies x # y
because of the disjointness assumption enforced by x. This property can be encoded as a pruning
strategy via ASP integrity constraints (Sec. 2.3) that are generated by our tool for each synthesis
task. Even for a doubly linked list, one of the simplest predicates in our benchmark (cf. Sec. 6.1),
without such optimisations, the synthesis time is increased from 3 to 339 seconds; the synthesis of
more complex predicates does not terminate in 20 minutes without SL-specific pruning.

2.5 Automatically Generating Positive Examples

So far, we assumed that the positive examples are provided by the user, in the format of memory
graphs. In practice, one may expect that such examples can be obtained in a more automated way,
e.g., from the available programs that manipulate with the respective data structures. For instance,
an existing work on shape analysis [38] uses a debugger for extracting memory graphs from a
program’s execution, with the assumption that (1) the user indicates the line of code to extract the
memory graph, and (2) an input for the program is provided. Unfortunately, this rules out a large
set of programs that expect a data structure rather than generate one: without a suitable input we
simply cannot run them to obtain a graph, and constructing such input is a task not much easier
than encoding a memory graph manually.

To address this issue, we implemented Grippy—a tool that can automatically generates positive
example in the form of arbitrary valid memory graphs of a data structure from the program
that manipulates with the structure, without requiring the user to provide any input. The only
assumption we make is that the program in question is instrumented with test assertions, which can
be used to filter out the invalid memory graphs from the randomly generated ones. We further show
in Sec. 6.2.1 that Grippy can effectively generate input graphs for synthesising SL predicates from
real heap-manipulating programs, reducing the specification burden for proving their correctness.
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Fig. 4. The Workflow of Sippy

2.6 Putting It All Together

We implemented our algorithm for inductive synthesis of SL predicates as the core of our tool called
Sippy. Fig. 4 shows the high-level workflow of Sippy. Starting from the left, the user can provide
positive examples (i.e., structure-specific heap graphs) for the synthesiser by either using our graph
generator Grippy on programs that expect the data structure instance (cf. Sec. 5), or by manually
writing them (e.g., in the style of Story-Board Programming [61]). Given the graph examples, Sippy
synthesises an inductive predicate definition, which can be further used for program verification in
SL-based verifiers (Sec. 6.2.1), for program synthesis (Sec. 6.2.2), or by any other SL-based tool.

3 Positive-Only Predicate Learning

In this section, we describe our approach for learning predicates from positive-only examples not
specific to SL predicates. To make the learning effective, we introduce the idea of predicate clause
minimisation, then explain how our specificity-based positive-only learning works by showing its
difference from the standard ILP systems [14, 18].

3.1 Normalising the Positive-Only Learning

As discussed in Sec. 2.4.1, without negative examples, adopting the smallest-size hypothesis, as done
in many program synthesisers [32, 39], can lead to finding solutions that are too imprecise. What
about selecting the candidate with the largest size instead? As shown by the sorted list (srt1(X, S))
example, more literals in the body do not mean the predicate is more specific if the body contains
redundant constraints among variables. Therefore, we first define a normalisation procedure to
remove the redundancy in the predicate clauses with the help of the logical entailment (denoted
as [= for Prolog clauses known as definite clauses in first-order logic).

DEFINITION 3.1 (CLAUSE MINIMISATION). Let numlit(h) denotes the number of literals in the body
of a clause h, and A < B denotes A |= B and B E A. A predicate clause h is eliminated iff
Jhy, hy = arg minyes numlit(X) A numlit(hy) < numlit(h), whereS ={X | X <= h}.

That is, if for any clause h there is a shorter clause hy equivalent (defined by entailments) to A, h
is eliminated in the synthesis. Such minimisation is naturally encoded by ASP (see the appendix
of this paper’s extended version [69]). Our experiments show that enumerable (also decidable)
entailment rules are effective for the synthesis of SL predicates within finite clause length (Sec. 6.1).
Note that the minimisation is essentially a pruning for unnecessary clauses: we do not handle
predicate-level redundancy (a.k.a. Horn literal minimisation [66]) as it is NP-hard in general [29].

3.2 An Algorithm for Positive-Only Learning

Our approach to learning predicates from positive-only examples can easily make use of components
from the existing ASP-based ILP systems [14, 18], seamlessly. In this section, we describe both the
basic ILP learning loop by ASP and the procedure of our positive-only learning.

Algorithm 1 (with the light grey cover ) shows the pseudocode of classic ILP learning loop, which

follows the “generate-test-constrain” approach. It takes (1) background knowledge bk, (2) positive
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Algorithm 1 The positive-only learning (POL) algorithm v.s. the standard ASP-based ILP

Require: Search space: initial constraints in_cons, size limit max_size
Require: User inputs: background knowledge bk, pos/neg examples exs
1: procedure POL or ILP (bk, exs, in_cons, max_size)

2 cons = 1in_cons, size =1, sol = True

3 while size# max_size do

4 h = CLiNGo(cons, size) > generate
5 if h is UNSAT then

6: size +=1

7 else

8 outcome = ProrLog(h, exs, bk) > test
9: if outcome is complete and consistent then

10: sol =h

11: break

12: cons += pruning(h, outcome) > prune
13: if outcome is complete and sol |£ h then

14: sol = update_sol(h, comparable(h, sol))

15: cons += new_pruning(h, outcome) > prune (updated)
16: return sol

and negative examples exs, and (3) learning bias defining parameters of the search max_size, such
as the maximum size of a predicate to be searched and other customisable parameters (e.g., whether
to enable mutually-recursive definitions), summarised as in_cons. After encoding the iterative
deepening search problem into an answer set program, it first uses the ASP solver Clingo [24]
to generate a hypothesis (line 4), and then uses Prolog to test it against the provided examples
(line 8). A hypothesis is complete if it entails all positive examples, and consistent if it entails no
negative examples. ILP returns a hypothesis as the solution if it is complete and consistent (line 11);
otherwise, it prunes the search space using the test outcome (line 12) and continues the search.
The test-based pruning works as follows. Whenever hypothesis testing shows that not all positive
examples are true (incomplete), the pruning on specialisation is applied; whenever part of the
negative examples are true (inconsistent), the pruning on generalisation is applied—ideas of the
pruning are illustrated in Sec. 2.2 and are detailed in [18].

For the case of positive-only learning (cf. Algorithm 1 with the 'dark grey cover ), we follow the
approach from the work on specification synthesis [52] to output a set of non-comparable (i.e., the
element in the set is not entailed by any other) solutions as a conjunction: there are possibly several
solutions satisfying the positive examples where none of them is more specific than the others, so
the conjunction of them is the most specific specification. The main difference from classic ILP
starts from line 13, when a hypothesis h is complete and is not entailed by the existing solution set
sol, the solution set is updated to adding h to the set, together with removing all solutions in sol
that are comparable (semantically more general in our case) to h (line 14). The set of most specific
solutions in the search space is returned when the search is exhausted (line 16). The advanced
pruning procedure (line 15) is enabled by domain knowledge (i.e., Separation Logic predicates in
our case—cf. Sec. 4.2).

We conclude this section by proving the soundness of positive-only learning in Algorithm 1.

THEOREM 3.1. The hypothesis set returned by the positive-only learning in Algorithm 1 contains

all non-comparable, most specific predicates that is complete (i.e., entailing all examples) in the search
space defined by the algorithm’s initial constraints (in_cons) and the size limit (max_size) parameters.
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(predicate) ::= (main_pred) | (main_pred)(invented_pred)
(main_pred) = (base_clause)([main_head]) | (rec_clause)([main_head])*
(invented_pred) ::= (base_clause)([inv_head]) | (rec_clause)([inv_head])=
(base_clause)(H) ::= H(This, {(args)) « (base_lit)*, (pure_lit)=
2 p
(rec_clause)(H) == H(This, (args)) « (pointer_lit)x*, (rec_lit)*, (pure_lit)+*
(literal)(R) ::= R({args))

(base_lit) ::= (literal)([base_pred]) % Pre-defined for spatial relations
(pure_lit) ::= (literal)([pure_pred]) % Pre-defined for pure relations
(pointer_lit) ::= [domain](This, (var)) % Extract from the memory graphs

(rec_lit) == (literal)((head))
(args) =:= (var) | (var), (args)
(var) u=X1|X2| ... | This
(head) ::= [main_head] | [inv_head| % From the task or randomly generated

Fig. 5. The grammar of the SL predicates, in basic Backus—Naur form (BNF), extended with (1) meta-variables
(+) for specialising the symbols, and (2) pre-defined atoms denoted by [X]| (with comments of their origins).

Proor. By induction on the size limit max_size of the predicate: when max_size is 0, there is
no predicate hypotheses, so True (the “always true predicate”) is the only most specific one. Then
assume that the theorem holds for max_size n, i.e, sol_i is the most specific hypothesis set; we
prove it for max_size n + 1.

When max_size is n + 1, based on the while loop in Algorithm 1, the search space for n + 1 is the
search space for n plus when size is n + 1. By the induction hypothesis, sol_i is the most specific
hypothesis set in the search space for n, and the output sol is either sol_i or containing more
specific predicates of space n + 1 with all comparable predicates removed. Therefore, sol is the
most specific hypothesis set in the search space with n + 1 as max_size.

O

4 Separation Logic Predicate Synthesis via Sippy

Having described the enhanced general-purpose predicate synthesis algorithm from positive-only
examples, we now show how to instantiate it for synthesis of inductive SL predicates and improve
the efficiency of the search algorithm by exploiting domain-specific SL insights. We further discuss
the SL-validity of the synthesised predicates and the completeness of the search algorithm.

4.1 SL Predicates: Basics and Intricacies

We define the space of SL predicates in a way standard for Syntax-Guided Synthesis (SyGuS) [2].
The grammar of the SL predicates is shown in Fig. 5. An SL predicate is either having a shape with
a single main predicate, or shaped by a main predicate together with a set of invented auxiliary
predicates, which are required in the case of nested linked structures.

Specific to the predicates, both main predicate and invented predicates consist of the base and
recursive clauses, where the base clause is the one that does not have any recursive calls, and
the recursive clause is the one that has recursive calls. The head literal (i.e., before <) in each
clause has a fixed argument This that denotes the base address of the data structure (similar to
the this reference in object-oriented programming). The body literals (i.e., after «—) in the clauses
are defined in terms of different predicates: the base (and pure) predicates are pre-defined, but
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extensible, to capture the spatial relation among the pointer for the base clause (the pure constraints
among variables in clauses, respectively); the domain predicates describe the points-to relations
can be obtained from the memory graphs; the recursive predicates are the recursive calls to the
main or invented predicates.

Three aspects in the grammar in Fig. 5 contribute to the infinite synthesis search space: (1) the
length of clauses, (2) the number of sub-clauses for each predicate, (3) the arity of the invented
predicates. For our task, we noticed that predicates for real-world structures rarely require more
than 10 literals in their bodies; two sub-clauses for each predicate are sufficient to capture the
common structures; and the arity of the invented predicates is set to be not more than the arity of the
main predicates. Such bounds for hypothesis space are common in almost all synthesis-by-example
tools (e.g., [18, 39, 59]), not only to make the synthesis tractable, but also to avoid overfitting [51]
(e.g., a predicate disjointing facts of all examples).

Below, we discuss two challenges in make SL predicate synthesis effective and efficient, together
with how we address them in Sippy.

4.1.1 Semantic-Based Pruning. In most existing syntax-guided synthesisers [2, 18, 59], the search is
accelerated by pruning of the hypothesis search space by employing the general syntax restrictions.
Other than limiting the syntax, we apply the following semantic properties’ restriction of Separation
Logic predicates to the search.

(1) Basic reachability: no points-to relation appears in the body other than the ones from the
this pointer. Thus, the clause p(X, Y) :- next(X, Y), next(Y, Z), ... is not allowed as a
candidate, because we expect all locations in the body to be accessible from this via fields.

(2) Basic assumptions: the base (non-recursive) clause restricts this pointer to either be null or to
equal to another pointer parameter variable. E.g., p(X, Y) :- nullptr(X), ... isallowed, but
p(X, Y) :- next(X, Y), ... cannot be a base clause.

(3) Restricted use of null: if a variable X is a null-pointer (denoted by nullptr(X)), no more X occurs
in the clause. E.g., the clause p(X, Y) :- nullptr(X), next(X, Y) is not allowed.

(4) Quasi-well-founded recursion of payload: the pure argument passed to a recursive call should (non-
strictly) decrease. E.g., for a clause p(X, S) :- next(X, Z), p(Z, S1), ..., the set S should
contains S1. This is a common assumption in recursive program synthesis [1, 39].

(5) Heap functionality: points-to relations of the same field should not target different locations.
E.g., a candidate clause cannot be p(X, Y) :- next(X, Z), next(X, Z1),

This list of search constraints represents a combination of the properties implied by SL semantics
(in a Java-style field-based memory model) as well as by common properties of data structures,
which are essential for the efficient search of SL predicates. The exact encodings of these constraints
in ASP are provided and explained in the appendix of the extended version of this paper [69].

4.1.2  Free Variables and Auxiliary Placeholders. Free variables are common in SL predicates, e.g.,
the (implicitly existentially-quantified) location Y in the base clause of the doubly linked list below:

dl1(X, Y) := nullptr(X).
dl1(X, Y) :- next(X, Z), prev(X, Y), dll(z, X).

Unfortunately, completeness guarantees of pruning discussed in Sec. 3.2 do not hold for predicates
with free variables in the sense that a complete (i.e., valid) hypothesis with free variables might be
wrongfully pruned during the search [18, §4.5]. To address this problem, we introduce auxiliary
placeholders into the search as a way to express predicate clauses with free variables. For example, the
following doubly linked list predicate can be regarded the same as the one above with anypointer()
placeholder, and can be synthesised.
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dl1(X, Y) :- nullptr(X), anypointer(Y).

d11(X, Y) :- next(X, Z), prev(X, Y), dl1(z, X).
On a technical level, this requires adding an ASP constraint (shown in supplementary material)
that forces the parameter of the placeholder predicate (Y here) to appear twice in the whole clause,
so it could be later translated into a single occurrence of a free variable.

4.2 Ensuring SL Validity in Prolog

An astute reader can notice that the validity of the synthesised predicates is not immediate due to
our treatment of Prolog clauses as SL assertions: the conjunction in Prolog does not guarantee the
separating conjunction () in the SL sense. As an example, consider the following simplified Prolog
predicate for binary trees:

bi_tree(X) :- nullptr(X).

bi_tree(X) :- t1(X, L), t2(X, R), bi_tree(L), bi_tree(R).
In this case, an instance of bi_tree(X) being evaluated to be true in Prolog can imply false under
SL semantics that enforces heap disjointness: considering a memory graph with two nodes

t1(n1, n2). t2(n1, n2). t1(n2, null). t2(n2, null).
so that the graph fact bi_tree(n1) is provable in Prolog, but the clauses bi_tree(L) and bi_tree(R)
are non-disjoint. Notice that, in our inductive synthesis setting, this situation would correspond to
having multiple occurrences of the same points-to fact in a memory graph representing a positive
example for the predicate, but should not be allowed by the definition of separating conjunction.

To avoid this source of unsoundness, we use a straightforward solution that enforces such
separating conjunction semantics in Prolog: a valid SL predicate is a complete Prolog predicate
where the positive examples succeed using each points-to fact exactly one time (a semantic property
of SL assertions known as linearity). For the complete Prolog but invalid SL predicates, we also use
the specialisation rule in Sec. 3.2 to prune them: if a predicate violates the linearity, then a more
constrained one will also violate it; this contributes to the new pruning in line 15 of Algorithm 1.

We establish the following property of our SL-specific predicate synthesis stating that, for the
predicates in Sippy’s search space in Sec. 4.1, if a memory graph is provable in Prolog with linearity,
then the corresponding heap is valid under SL semantics.

THEOREM 4.1 (SL VALIDITY). LetF(h) denote the memory graph of a heap h. For any output predicate
p(X) of Sippy and any heap h, the following fact holds: F (h) |FprologsLin P(X) = h sz p(X).

4.3 The Sippy Algorithm

The only remaining step before putting all the pieces together is to select the desired predicate from
the set of non-comparable solutions of positive-only learning. Even though predicates from POL can
be conjuncted in general, the semantics of SL predicates following the definition in Sec. 4.1 is more
restrictive and the conjunction of valid SL predicates may result in an ill-formed or a constantly
false one. We found in practice that after the semantics-based normalisation from Sec. 3.1, the
number of literals can serve as a good enough specificity metric among incomparable predicates,
since containing more literals is likely to contain more information or constraints about the heap
structure. Following this intuition, we define the synthesis algorithm with MAX_POL function,
which obtains the largest predicate from POL as per Algorithm 1.

Algorithm 2 summarises the internal workings of Sippy. Our synthesiser takes as inputs memory
graphs encoded as sets of logic facts (e.g., graph_bk, such as next(..) and value(..) from Fig. 2),
positive examples of heaps on which a predicate holds (e.g., exs as srt1(..) from Fig. 2), so that the
shape (matched with pre-defined shapes in Sec. 4.1) a set of ASP constraints (graph_cons) describing
the information in the graphs (such as the arity and types of the predicates to be learned) are
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Algorithm 2 The Sippy loop for inductive predicate synthesis

Require: memory graphs consist of graph_bk, exs
1: procedure Sippy(graph_bk, exs)
2: graph_cons, shapes = graph_info(graph_bk, exs)

3 max_var = max_body =1
4 sol =True > The most general solution as initialisation
5 for shape in shapes do
6: max_size = maxsize(max_body, shape)
7 h = MAX_POL(graph_bk, exs, graph_cons, max_size)
8 if h < sol then > A more specific predicate is obtained
9: max_var, max_body = (var_of(h), size_of(h)) +§
10: sol =h
11: else if sol == True then > No predicate is yet learned
12: if max_var == upper_bound then
13: continue > Try the next shape
14: max_var, max_body += (1, 1)
15: else
16: break > No more specific predicate is found
17: return sol

obtained (line 2). Two parameters (line 3) for positive-only learning (MAX_POL), (1) the maximum
number of variables and (2) the maximum size of the body of a predicate clause for restricting the
search space, are gradually increased during the search using the following empirical strategy: if
no solution is valid (line 11), we either increase both parameters by one to enlarge the space until
finding one (line 14), or the attempt on the current predicate shape fails (i.e., the upper bound of
the search space is reached), then Sippy will try synthesising using the next shape (line 13, i.e.,
more auxiliary predicates); when obtaining one new better predicate than the existing, the search
parameters are both increased by a parameter § to find a possibly more specific predicate (line 9),
and the solution is updated (line 10); if the learned predicate in the larger search space is not better
than the previous, we stop the search and output (line 15-16). The role of the parameter § is, thus,
to provide a “margin” for the completeness of the search: it is not guaranteed that Sippy will find
the most specific solution across all possible search spaces, but only in the search-space that is bound
by the returned output’s parameters plus 5. Note that line 6 of Algorithm 2 features a function
maxsize() that calculates the maximum size of the search space based on the maximum number of
variables and the predicate shape setting.

Finally, we provide a correctness argument for Sippy. The soundness of synthesising consistent
(i.e., inhabited) and well-formed (i.e., finitely provable) SL predicates is guaranteed by the soundness
of classic ILP and Theorem 4.1. The following “local” completeness states that, given the output
of Sippy, no more specific output can be discovered, even in the larger search space obtained by
increasing the search parameters once by ¢ at the line 9 of Algorithm 2.

THEOREM 4.2 (LocAL COMPLETENESS OF SIPPY). If the output of Sippy is a predicate with the
maximum number of variables m and the maximum length of the body n, then there is no predicate
with the maximum length of the body m’ and the maximum number of variables n’, where (m’, n") —
(m, n) =4, that is more specific than the output predicate.

Proor. Directly by contradiction and Theorem 3.1. Assume that the output solution sol is with
size (m, n), and it is not the most specific one in size (m’, n’) = (m, n) + 4.

2We choose it to be (1,2) in our experiment from the natural observation: for our domain, we expect to have one body literal
where the predicate is generating a new variable, and one more body literal that uses the new variable.
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Algorithm 3 Generating random memory graphs and examples

Require: p: Program with assertions as tests
Require: n: Number of graphs to be generated
1: Initialize GraphsAndExamples < 0
2: for sz « 1 to max_size do

3: cnt =0

4 while cnt < [n/max_size] do

5 node, ..., nodes, « init_node()

6 node;.key < random(int) for i € [1, sz]

7: node;.pointer < random(node) for i € [1, sz]

8 if p(node, ..., nodeg;) passes the tests then

9 cnt «—cnt+1
10: example « summarise_graph(node;, .. ., nodes;)
11: GraphsAndExamples.add(graph(nodey, . . ., nodes;), example)

12: return GraphsAndExamples

Because sol is the output, the search space is set to be (m’, n’) after the loop it is obtained. With
Theorem 3.1 and the assumption, there is a solution sol’ in (m’, n’) that is more specific than sol,
which is a contradiction with the output sol. Thus, sol is the most specific one in (m’, n’). m]

5 Automated Heap Graph Generation via Grippy

As presented, Sippy requires input graphs to be provided explicitly. The final technical contribution
of this work is Grippy—an auxiliary tool that allows one to automatically generate valid structure
graphs via programs that take them as inputs and are most likely already available to the user.
Valid memory graphs can be obtained by extracting concrete heap states from the program
execution, provided concrete inputs, as, e.g., done by the SLING tool [38]. This approach is, however,
only applicable if the program in question generates a data structure instance, and is problematic if it
expects it as an input. Our idea for automated graph generating is inspired by works on fuzz-testing
and uses a structure-expecting program as a validator for candidate graphs. Given a program with
assertions, Grippy generates arbitrary input memory graphs, subject to basic validity constraints
(e.g., any node should be reachable from its root), and keeps the graphs that pass the assertions
together with example facts summarised from those graphs by traversing them and accumulating
their payload in a set, so they can be used as inputs for Sippy. The details are given in Algorithm 3.
One can argue that the generator defined this way can also effectively produce negative examples,
thus removing the need for our positive-only learning. In practice, however, the number of the
negative examples can be large due to the randomness of the generator that has no knowledge of
the data structure (cf. Sec. 6.2.1). This makes it impractical to use them for ILP-based synthesis that
cannot effectively discriminate good (i.e., informative) negative examples from arbitrary junk.

6 Evaluation and Discussion

We implemented Sippy by extending Popper with the combined use of Python (~200 lines for
modifying Popper), Prolog (14 rules for specificity of predicates, and 19 supported predicates
for pure relations in first-order theories), and ASP (~200 lines for SL domain knowledge, and
~300 lines for Sippy’s search space, where 46 rules are used to encode the minimisation rules of
the 19 pure relations). The prototype of Grippy is implemented by ~50 lines of ASP (to generate
the graphs) together with ~100 lines of Python. All experiments were conducted on an 8-core
M1 MacBook Pro with 16GB RAM. The valid structure-specific input memory graphs were either
manually/LLM-written, or automatically generated via Grippy as described in Sec. 5.
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6.1 Benchmarking Predicate Synthesis

To assess Sippy’s efficacy as a tool for heap predicate synthesis, our evaluation addresses the
following research questions:

RQ 1.1 How effective is Sippy in synthesising heap predicates?
RQ 1.2 What factors affect the synthesis efficiency?
RQ 1.3 How scalable is Sippy with respect to the input size?

RQ 1.1: Effectiveness and Expressiveness. We have assembled a set of benchmark for common
and complex heap-based data structures. Tab. 1 summarises our (mostly)® successful case studies:
19 Separation Logic predicates synthesised by Sippy within the imposed 20 min time limit, which
shows that Sippy can effectively produce SL predicates for a variety of heap-based data structures.

In our evaluation, we restricted the predicates in the search space to feature at most one pure
theory, since for most predicates, the pure relations on variables do not influence each other’s
validity. For example, the AVL tree predicate should feature (1) a relation between the heights of a
node’s subtrees and (2) ordering relations on the node payload; any one of these can be encoded
independently, leading to separate SL predicate definitions: balanced(A, B) for balanced tree and
bst(A, B) for binary search tree. One can then merge those two SL predicates with identical spatial
components into a united AVL tree avl(A, B, C) as follows:

(1) Merge the parameter lists by appending the pure variables;
(2) Merge pure relations with the overlapped variable renaming;
(3) Adapt the recursion in the spatial parts for the new parameter.

To show that our positive-only learning (in Sec. 3) and the SL-based optimisations (in Sec. 4.1.1)
are effective, we compared the synthesis time of Sippy with the unoptimised classic ILP system
Popper, Popper with the SL-based optimisations, and Sippy without the optimisations (from left
to right in the table). The results show that (1) our positive-only learning effectively learns the
predicates which classic ILP cannot discover, and (2) our optimisations help to reduce the synthesis
time significantly for both classic ILP and POL for most cases. The only exception is #2, where
the unoptimised Sippy is faster, is due to the small size of the predicate, where the cost of adding
constraints for reducing the search space is larger than the benefit of the pruning.

We attempted to compare synthesis capabilities of Sippy to those of ShaPE [8], the most closely
related work. Like Sippy, ShaPE synthesises SL predicates for data structures from memory graphs,
allowing for positive-only synthesis without negative examples via meta-interpretive learning
(MIL) [48]. However, unlike Sippy, ShaPE only allows one to synthesise a structure’s shape con-
straints, without any restriction on the data payload or other pure constraints—this is why three
data structures (SLL, BST, and a list of lists) with different pure relations are joined in Tab. 1 into
one predicate per structure in the ShaPE column Ts. It has been shown in the prior work that the
MIL-based learning cannot define a complete search space for general logic programs [19], which
indicates that ShaPE cannot be extended, even in principle, to express arbitrary data constraints,
such as arithmetic ones. That is, theoretically, 9 (those not marked as NA) out of 16 predicates (with
the joining taken into the account) in Tab. 1 can be synthesised by ShaPE. However, in practice,
the bugs in ShaPE’s learning loop implementation resulted in either (1) the search timing out (TO),
(2) ShaPE terminating with an error (ERR), or (3) producing overfitted predicates, e.g., 4 clauses
instead of 2 for BST (WA). At the end, we were able to only synthesise 4 predicates with ShaPE.

RQ 1.2: Efficiency. To understand what affects the synthesis efficiency, let us first look into the case
studies with long synthesis times (more than 5 minutes): #13 (BST with list payload), #14 (balanced

3We will elaborate on the partially-successful binomial heap instance #15 in Sec. 6.3.
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Table 1. Statistics on synthesised predicates and the comparison with other tool/setting. Columns following
the predicate names are split by (1) the properties of the predicates: whether a predicate is invented (i.e.,
nested data structure, Pl), used pure relations Pure, the size of the output predicate Size (a triple of arity,
the maximal number of literals, the maximal number of variables in the predicate); (2) the stats of Sippy’s
synthesis: the percentage of run time taken by testing the hypotheses Test%, the synthesis time of finding
the expected hypothesis Ty, the synthesis time of exhaustive search in Positive-only learning Tp, (3) the time
T it took to synthesise a result when using Popper as the classic ILP to synthesise, the time T}, when using
classic ILP together with our optimisation to synthesise, and the time Tpq of running POL with SL-based
optimisations disabled optimisations; finally, (4) we report the runtimes Ts of ShaPE on the same tasks
(but without pure relations). All times are in seconds, with TO for time—out,_ERR for crashes, WA for wrong
answers, and NA for not supported in principle.

No. Predicate | PI Pure Size |Test% To Tp | Tt T Tpa| Ts
1 singly linked list (payload)| no set (2,8,5)| 2% <1 1 4 <1 3

2 singly linked list (length) | no int (2,95 | 1% 1 9 NA NA 4 <1
3 singly linked list segment no set (3,8,6) | 5% <1 1 TO 1 31 1

4  doubly linked list no set  (3,10,6)| 1% 2 3 NA NA 339 1

5 doubly linked list segment no set (510,8)| 1% 49 192 | TO 10 TO | TO
6 sorted singly linked list no set (2,95)| 3% <1 1 NA NA 4 | NA
7  sorted doubly linked list no set (3,11,6)| 2% 1 3 NA NA 231 | NA
8 circular list no set (3,8,6) | 23% <1 1 18 <1 81 <1
9 lasso list no set (3,8,6) | 25% <1 1 TO 1 TO | NA
10 binary tree no set (2,11,8)| 8% 2 13 | TO 2 245 | WA
11  back-linked tree no set  (3,13,9)| 9% 33 176 | TO 41 TO | TO
12 binary search tree (set) no set  (2,13,8)| 15% 11 26 | NA NA TO NA
13 binary search tree (list) no list (2,13,8)| 39% 33 433 |[NA NA TO

14 balanced tree no int  (2,12,7)| 32% 34 458 |NA NA TO | NA
15 binomial heap (order) no int (3,14,8)| 33% 37 1,087 | NA NA TO | NA
16 binomial heap (payload) no set (3,14,9)| 2% 59 101 | NA NA TO | NA
17 list of lists (set) yes set (2,17,5)| 1% 9 321 | TO 33 TO ERR
18 list of lists (list) yes list (2,17,5)| 1% 14 759 | TO 47 TO

19 rose (n-ary) tree yes set (2,17,6)| 1% 9 749 | NA NA TO | ERR

tree), #15 (binomial heap with order), #18 (list of lists with list payload), and #19 (rose tree with
set payload). All these case studies feature large predicate sizes, together with either nested data
structures or complex pure theory (integers or lists). As witnessed by the last two columns of Tab. 1,
the time Sippy takes to obtain the expected predicate is less than 1 minute, and most runtime is
spent on the exhaustive search to give the guarantee of local completeness (cf. Theorem 4.2). It
is natural for nested data structures to take long time, because the increment of search space is
applied to both the synthesis of the auxiliary predicate and the whole predicate.

We also wondered about how the used pure theories affect the synthesis efficiency. To answer
that question, we compare two pairs of predicates (#12 v. #13, #17 v. #18) using the same input
memory graphs but different pure theories: sets v. lists. The former is more efficient: this is because
the list is more expressive than set (e.g., a set union with itself is eliminated, but appending a list to
itself is producing a new list), so the search space is larger after the redundancy elimination. The
same for integer theories: different combinations of integer operations lead to large search space.

RQ 1.3: Input and Scalability. Our experiments demonstrate that 2-3 example graphs with tens of
nodes in total (less than 20 node per case study on average in our benchmark suite) are sufficient
to synthesise good predicates (we manually assessed the results’ quality). We report the fraction
of time it took to test the hypotheses during the search. In our case, it is not negligible for the
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Fig. 6. Testing time with different input graphs (left); and with different number of nodes per graph (right).

examples with complex pure relations (e.g., #13-15). In theory the test time should grow slower
than linearly with the size of inputs. This is because only correct candidates require traversing all
nodes by the Prolog unification. Since most candidate predicates do not satisfy all the examples,
the testing is terminated when Prolog reaches the node that falsifies the example.

To show scalability of the tool w.r.t. the input size, Fig. 6 shows the testing time by graph number
with 100 nodes per graph on its left, and the testing time by node number with 5 graphs on its
right. The general trends are as expected: the testing time grows slower than linear in the graph
number, and grows linearly in the node number (the percentage of nodes traversed in the examples
should be constant with the same topology of the graph, thus linear).

Below we discuss the outliers. The reader can notice the substantial difference between the
testing time of the lasso list case study and every other example. The reason for that is our current
implementation of the linearity check, which is not optimised for circular data structures. Note that
the testing of SL predicates consists of two parts: the Prolog validity check and the linearity check
(in Sec. 4.2), we find that the all but circular data structures’ linearity checking time is negligible.
This inefficiency also explains the faster-than-linear growth of testing times in Fig. 6, and should be
solvable by integrating the checking into Prolog’s SLD resolution [33] (left as future work). Finally,
the testing time of back tree is not even strictly increasing. The reason is: providing more or larger
examples makes it possible to prune earlier, thereby reducing the overall synthesis time.

6.2 The Utility of Sippy

6.2.1 Verification. Let us demonstrate how the combination of Sippy and Grippy facilitates de-
ductive program verification in SL-based provers. Specifically, our goal is to streamline the task of
writing inductive predicates, by instead generating them automatically from programs to be verified.
We are interested in the following research questions w.r.t. the effectiveness of the approach:

RQ 2.1 How much human effort is required to infer the predicates?

RQ 2.2 How effective is Grippy for producing positive examples?

RQ 2.3 Are the inferred predicates the same as the expected (human-written) ones, so they can be

used directly for the verification?

RQ 2.1: Required Human Effort. For this experiment, we adopted the case studies from benchmark
suites of three different deductive verifiers [30, 53, 54], containing heap-manipulating programs for
different linked data structures, many of which come with non-trivial data constraints. Our aim is
(1) to quantify the human effort for annotating selected program(s) with assertions as oracles for
graph generation, and (2) to confirm that Grippy can produce good-quality graphs for Sippy to
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Table 2. Statistics on generating input memory graphs for different predicates: the lines of codes of the
assert-annotated function or its test, the number of graph instances (capped by 100) generated in 10 minutes,
the number of asserted conjuncts, the ratio of the number of valid graphs to all randomly generated graphs,
and whether the original program is verified with the synthesised predicates against its original specification.
For VeriFast and GRASShopper, Y means verified; we did not manage to compile VCDryad, so = means
equivalent to the expected predicate, and ? means not equivalent and couldn’t be checked.

Predicate Programs ‘ LOCprog LOCtest Assert Num Ratio ‘ Verified?
concat? 10 - 0 100 100% Y
ingly Linked Li
Singly Linked List reverse? 10 - 0 100 100% Y
find! 10 - 1 100 14.4% =
insert_iter! 28 - 2 100  13.3% =
Sorted List -
orted s copy? 26 - 2 100 13% Y
double_all? 25 - 2 100 12.1% Y
append! 11 - 2 47 2.9% =
dispose? 9 - 2 41 25% Y
D ly Linked Li
oubly Linked List reverse’ 16 - 2 47 29% Y
insert_front! - 10 2 47 2.9% =
find! 16 - 3 100  11.5% =
. 1 _ A _
Binary Search Tree 1nser§ 22 6 100 8.0%
free 11 - 3 100 7.5% Y
remove> 43 - 3 100 12.3% Y
. . find_min'
Binomial Heap (order) S - 26 5 18 1.1% ?
merge!
! From VCDryad [53] 2 From GRASShopper [54] 3 From VeriFast [30]

synthesise the expected predicates within a reasonable time limit (10 min). For simplicity, we only
consider the graphs without cycles unless being specified (doubly linked list in our case study).
Tab. 2 shows the statistics for generating up to 100 valid graphs, with up to five nodes, within
the time limit of 10 minutes, to infer data structure predicates. In all cases, between 0 and 5 simple
assertions (i.e., one single comparison for most cases, except for BST, one of whose assertions is
expressed by a comparison function) are enough for capturing the properties (e.g., line 7 in Fig. 7).

RQ 2.2: Effectiveness of the Graph Generator. As shown in the table, in each experiment Grippy
produced at least 18 valid graphs, which is sufficient for Sippy to infer the expected predicates.
Unsurprisingly, the throughput of the generator (i.e., the Num column in Tab. 2) correlates with
the complexity of the predicates: e.g., the binomial heap instance needs to satisfy not only the
order relation between the nodes but also the heap property, which results in low chances for the
generator to produce valid instances; generally, the throughput is similar (ranged by randomness)
across programs manipulating the same structure. As expected, the fraction of valid graphs w.r.t.
all randomly generated can be very low for complex predicates, which shows the importance of
positive-only learning, as large numbers of trivially invalid graphs would slow down the synthesiser.

Even though in principle Grippy could be used for any programs, we found that writing assertions
for certain functions ( greyboxed in Tab. 2) is not an effective way to generate the valid instances.
This is because the annotated node might simply not traverse “enough” of the structure to perform
the validation. As an example, consider inserting a node to the front of a doubly linked list:
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1 DLNode * insert_front(DLNode * x, int k) {

2 if (x == NULL) {

3 DLNode * head = (DLNode *) malloc(sizeof(DLNode));
4 head->key = k;

5 head->next = NULL;

6 head->prev = NULL;

7 return head;

8 } else {

9 if(x->next != NULL) assert(x->next->prev == x);

10 DLNode * head = (DLNode *) malloc(sizeof(DLNode));
11 head->key = k;

12 head->next = x;

13 x->prev = head;

14 return head;

15 }

16}

Testing the following incorrect example of a DLL heap graph, produced by Grippy, will not violate
the assertion at line 9 of the code above.

next(nl,n2). next(n2,n3). next(n3,null).
prev(nl,null). prev(n2,n1). prev(n3,null).

The reason is: the assertion at line 9 is only checked for node n1, but the offending node n2 is not
checked because the function does not traverse the whole list. As a solution, in cases when no
functions manipulating with the structure traverse the whole structure graph (so their LOCs are
not informative, hence “-” in Tab. 2), one can instead write a standalone traversal function to be
used as an oracle. Sizes of those additional functions are shown as LOCieg in Tab. 2.

We conclude that Grippy is a useful front-end to Sippy, but its effectiveness depends on the
“thoroughness” of the structure traversal done by the function that is used as an oracle.

RQ 2.3: Quality of Inferred Predicates. With memory graphs obtained automatically, we synthesised
the respective predicates with Sippy and translated them into the syntax of the corresponding SL-
based verifiers (automatically or manually, based on how complex the concrete verifier’s language
is). Next, we verified the original programs with the inferred predicates, thus, demonstrating that
the inferred predicates are equivalent to the expected ones. An inferred sorted list predicate of
VCDryad, corresponding to the example from Sec. 2.2, is shown in Fig. 7. The only failing case is
the binomial heap with order constraints because of the limitation of pre-defined predicates in
1 int sorted_find(SNnode * 1, int k){

2 if (1 == NULL) {

3 return -1;

4 } else if (1->key == k) {

5 return 1;

6 } else {

7 if (1->next != NULL) assert(l->key <= 1->next->key);
8 int res = sorted_find(l->next, k);

9 return res;

10 T3

define pred sorted”(a):
((a 1= nil) & emp) |
((a |-> loc next: c; int key: e) * sorted”(c) & (e lt-set keys”(c)))

Fig. 7. An example of the input program with assertions and inferred predicate for sorted list in VCDryad.
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No. | Category Program Code/Spec | Time // pre: {f :-> x ** sorted_dll(x, z, s)}
1 sll 5.5 0.2s // post: {f :=>y **x sll(y, s)}
2 bst 8.0x 0.2s void srt_d11_to_sll (loc f) {
3 | Deallocate dlL_seg 24x | 02s loc x1 = READ_LOC(F, ©);
4 multilist 16.0x 0.3s if (x1 ==0) {

WRITE_INT(f, 0, 0);
5 lseg 2.0x 0.8s return;

} else {

6 Copy bst 3:5% 3.3 int vx11 = READ_INT(x1, 0);
7 balanced tree 3.0x 1.9s loc nxtx11 = READ_LOC(x1, 1);

loc z1 = READ_LOC(x1, 2);
8 Size sll_len 21x 0.4s WRITE_LOC(F, 0, nxtx11);
9 balanced tree 3.5x 0.6s srt_dll_to_sl1(f);

loc y11 = READ_LOC(f, 0);
10 sll — dlseg 2.5x 0.4s loc y2 = (loc)malloc(2 * sizeof(loc));
11 srt_dll — sll 3.1x 7.4s free(x1);
12 dll — bst 15.0x 42.8s WRITE_LOC(f, 0, y2);

WRITE_LOC(y2, 1, y11);
13 Transform btree.f biree 13.6x 11.8s WRITE_INT(y2, 0, (int)vx11);
14 multilist — sll 5.0x 8.8s return;
15 btree — dll 9.6x 7.1s 1}
16 bst — srtl 11.6x 10.3s
17 dll - srt_dll 7.3x 9-3s Fig. 9. An example SuSLik output (#11):a C

program for converting a sorted DLL to SLL.
Fig. 8. Example programs synthesised by SuSLik from SL loc, READ_LOC, etc are macro-definitions
specifications stated using predicates produced by Sippy. around ordinary C types and operations.

Sippy (further explained in Sec. 6.3), where the synthesised predicates are partially correct but not
strong enough, and need to be refined by manually adding the missing constraints.

To summarise, we found the combination of Grippy/Sippy effective for automatically producing
SL predicates equivalent to human-written ones from either modestly-annotated programs to be
verified, or with a help of a simple human-written traversal procedure for the data structure.

6.2.2 Deductive Synthesis. As another demonstration of Sippy’s utility, we employed the synthe-
sised SL predicates to automatically generate correct-by-construction heap-manipulating programs
in C using a state-of-the-art deductive synthesiser SuSLik [56, 67]. The goal of this exercise was to
demonstrate that, one can use Sippy together with SuSLik to obtain provably correct implementa-
tions of structure-specific procedures for copying, computing their size, and transformation without
knowing how to specify SL predicates, but using heap graphs. Our case study includes 17 synthesis
tasks involving the predicates from Tab. 1, producing programs not featured in any past works on
SuSLik. The average code/spec AST size ratio is 4.1, and the average SuSLik synthesis time is 6.2
sec, which shows that Sippy produces predicates that are immediately suitable for proof-driven
synthesis. Fig. 8 provides the detailed statistics. An example of the synthesised C program that
transforms a sorted DLL into a singly linked list is given in Fig. 9.

Compared to the existing example-based heap-manipulating program synthesisers, SPT [61] and
Synbad [58], the joint Sippy/SuSLik workflow does not require “fold/unfold” functions (as does
SPT) or a template (as needed by Synbad) for the intended programs.

6.3 Failure Modes and Future Work

In its current version, Sippy failed to synthesise predicates for several intricate linked structures.
The reasons for the failed tasks fall into one of the following three categories:

(1) Sippy’s default settings cannot fully capture the structure’s properties. Consider #15 from Tab. 1:
the root and leaf nodes of binomial trees have different order relation with their siblings, but

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 86. Publication date: April 2025.



86:22 Ziyi Yang and llya Sergey

our search space cannot express this distinction, so the synthesised predicate is the best in this
setting (capturing nodes’ ordering w.r.t. their children) but not the expected one.

(2) Nested data structures with multiple arguments or complex pure relations, For example, the
needed search space of the braced list segment predicate [57] is too large to be fully explored
within our time limits.

(3) An instance of a predicate cannot be proven by top-down evaluation, so that Prolog cannot
evaluate them as expected in SL.

In the first case, the solution is naturally to allow richer search space: we might either extend the

search space with more predicates (e.g., judging a node is root or not), or enabling larger parameters

in Sec. 4.1 to enrich the expressiveness of Sippy. This is in line with a common synthesis trade-off
between the expressiveness and the efficiency; we leave it a future work to find general search
space settings to enrich the expressiveness without much loss of performance.

In the second case, it is possible to optimise the synthesis of nested predicates using problem-
specific knowledge. For instance, we can assume the inner data structure is not mutually recursive
(as it is in the case of the braced list segment), reducing the search space by splitting the synthesis
of the auxiliary predicate and the whole predicate. We leave this optimisation to the future work.

To explain the last issue, consider the following Prolog predicate:

p(X, Y) :- X == Y.

p(X, Y) :- next(X, Z), p(Z, Y), p(X, 2).

In plain words: if X and Y have the same location, then p(X, Y) is true; if not, then the p(X, Y) holds

if the both segments p(X, Z) and p(Z, Y) are true, where Z is the next node of X. This predicate

is valid in Separation Logic, but Prolog rejects it, because of its validity checking algorithm. To
understand the difference that causes the rejection, consider the literal p(a, b), in the case when

next(a, b) isa fact that holds. In SL, the literal is true, because it is checked in a bottom-up way, i.e.,

“whether the predicate is consistent if it is true”. Therefore, p(a, b) holds because it is consistent

with next(a, b), p(b, b), p(a, b). However, the test of p(a, b) in Prolog is done in a top-down

way, i.e., “whether there is a variable unification that makes next(a, z), p(Z, b), p(a, Z) true’,
which triggers a recursive test on the inner p(a, b).It will be interesting to see whether replacing

Prolog with the solvers from SL-COMP [60] can directly solve it without other overhead.

6.4 Why not just use Large Language Models?

Though Sippy has non-negligible runtime for synthesising complex predicates, its completeness
guarantees (cf. Theorem 4.2) ensure that the synthesised predicates are the best (i.e., the most
specific ones) in the respective search space. Large Language Models (LLMs), as a powerful tool for
learning, have been used extensively in the recent works for synthesising specifications [40, 68],
with faster runtime but without completeness guarantees. One may wonder: why not just ask
an LLM to synthesise a specification, and use Prolog to test it against the provided examples,
mimicking the loop of Algorithm 1? To assess whether our synthesiser with proven completeness
guarantees provides better solutions compared to a state-of-the-art LLM, we pose SL predicate
synthesis as a task for the latter by designing a detailed prompt outlining our intentions, followed
by a series of queries with inputs similar to what is required by Sippy (i.e., positive examples).

Phase 1: Simple Prompt for Learning. Before the synthesis, we provide a detailed prompt to an LLMs

as outlinining the required background knowledge, which includes the following parts:

(1) The task: synthesising SL predicates in Prolog for linked heap structures given the graphs.

(2) An example of the predicate “sll” for singly-linked list and its graphs, with the explanation.

(3) Other synthesis settings, such as the predicates that can be used for pure constraints, the option
to invent auxiliary predicates, and the requirements on the size of the results.
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Phase 2: Synthesising Complex Predicates. A synthesis prompt for each task is given via the following
template, along with graphs and positive examples in the same format as taken by Sippy:

For the next task, here are the graphs: (Graphs)
And here are the positive examples: (Positive examples)
Please, synthesise the predicate.

Our experiments were done on latest ChatGPT-40.! Below, we summarise the outcomes.

(1) We noticed that LLMs can correctly synthesise the predicates for simple cases (e.g., doubly-
linked list), but it fails to synthesise predicates for more structures with non-trivial constraints
(e.g., binary search trees and balanced tree): its result often don’t type check or miss constraints.

(2) Unsurprisingly, an LLM benefitted from the predicate names we provided to it. For example,
with providing the name rose_tree in the prompt, the output predicates are mostly correct.

(3) As LLMs have quick turnaround compared to running Sippy, one promising direction is to use
LLMs for the initial exploration of the search space and then use Sippy to refine the results.

We conclude that LLMs can be used for synthesising simple predicates, and have a potential
accelerate the synthesis process by deriving plausible candidates, which can be checked by Prolog
and, possibly, repaired. That said, completeness guarantees of Sippy provide tangible benefits,
allowing it derive correct solutions for complex examples, which an LLM failed to discover.

7 Related Work

Learning Data Structure Invariants. Other than ShaPE [8], discussed extensively in Sec. 6.1,
earlier work on shape analysis also used inductive synthesis to generate shape predicates [28],
but the input of the synthesis framework is a program that constructs the data structure instance,
providing more information (e.g., the recursion structure) compared to memory graphs. Similar
to ShaPE, that work only considers the shape relation without the data properties. DOrder [71]
and Evospex [43] are two later works on learning the data invariants from the constructors of the
data structures (in OCaml or Java). Locust [10] infers shape predicates from pre-defined definitions
with statistical machine learning, with no completeness guarantees. The work by Molina et al. [42]
describes a deep learning-based framework that implements a binary classifier for the data structure
invariants; unlike our work, it does not provide logical descriptions of data structures but merely
tells valid structure instances from invalid ones. Though more machine learning methods [64]
have shown to be effective in learning data structure, the training data is required to be large and
diverse, which is not always available in practise. Dohrau [20] describes a black-box approach
to infer SL specifications and predicates from programs based on ICE learning [22], while it can
neither deal with, nor be easily extensible to nested data structures. SLING is a framework to infer
program specifications in Separation Logic from memory graphs [38]; it does not infer new heap
predicates and instead offers a number of pre-defined structure shapes, where Sippy can work as a
complementary tool to help the user to pre-define new predicates.

Synthesising Declarative Representations. The approach of Sippy extends two lines of work
on synthesis of declarative representations programs and data. The first one is inductive logic
programming (ILP), which aims to learn logic programs from examples. Progol [47] is an early
notable ILP system that achieves positive-only learning by Bayesian framework, which is not sound
in general. Importantly, Progol does not support learning recursive logic programs. AMIE [21] is
another knowledge rule-mining framework with positive-only examples, but the learning is in
AMIE mainly targeted knowledge base graphs, so the learned rules were not as complex as in ILP
settings. Other than those conventional ILP methods that synthesise Prolog programs, significant
progress has been made recently on synthesising Datalog [62, 63] and ASP programs [35, 36] from

4The conversation snapshot is available at https://chatgpt.com/share/66f266a5-0338-8006-8bb9-1ef61c33d437.
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examples. While the syntax of Separation Logic assertions and predicates can be expressed in
the Datalog or ASP domain, the approaches developed in the past efforts are not immediately
applicable, as they: (1) may require negative examples (in the case of Datalog synthesisers), and
(2) limit the pre-defined predicates expressed only by grounded facts. In particular, the latter means
that the predicates used in the synthesis cannot express arbitrary operations, because grounded
facts are fully instantiated and do not contain variables. This limitation makes impossible the
representation of general rules or operations that can be applied to a range of inputs. For example,
a grounded fact can state that a specific element belongs to a set, but it cannot express a general
rule for membership that applies to any element. At the same time, in Sippy, the predicates are
written in Prolog, a Turing-complete language, which enables definitions of operations like list
append, set union, etc,—a feature our approach has directly inherited from Popper [18].

The second relevant line of work is specification synthesis, which aims at synthesising formulas
within various but pre-defined domains. Our graph generator (Sec. 5) follows the ideas of Precis [4],
which similarly uses test cases as a learning oracle to generate positive example for synthesising
program contracts. At the same time, the formal guarantees provided by positive only learning—
generating all non-comparable and most specific predicates, are similar to those of Spyro [52],
which defines a general framework for synthesising specifications for customisable domains. The
main difference between Sippy and those works is that Sippy synthesises predicates that can contain
recursive definitions—an aspect cannot be handled by the existing specification synthesisers.

The overlap between two lines of work above is the notion of least general generalisation (LGG) [55].
The example-based specification synthesisers can be considered as learning the LGG of the ex-
amples, which is exactly what early bottom-up ILP systems do. The limitation of existing LGG
operations is well-known in ILP [15]: there is no LGG operations for recursive logic programs,
which is the reason why modern ILP systems are defined in a top-down fashion.

Answer Set Programming v. Satisfiability Modulo Theories. ASP plays a crucial role in our work,
similar to that of SMT solvers most contemporary synthesis tools. As mentioned by Bembenek
et al. [5], ASP is effective at search tasks involving fixpoints: pruning in Sippy can be encoded easily
with recursive logic predicates, some of which though can be expressed in SMT, need to be encoded
in a more complex and hard-to-understand way. Another advantage of ASP is its efficiency when
enumerating all solutions in a search space, which is crucial for exhaustively exploring the space
of SL predicates. In contrast, in most state-of-the-art SMT solvers, only one model is returned at a
time, so for obtaining a complete set of models, the user must either block an obtained model and
re-run the solver to get the next one with high overhead, or use expert-level techniques [6]. On the
other hand, SMT solvers usually come with a rich set of theories, whereas ASP modulo theories is
still limited to basic theories like difference logic [31] and acyclicity constraints [7].

8 Conclusion

We presented the first approach for synthesising property-rich inductive predicates for data struc-
tures in Separation Logic (SL) from concrete heap graph examples, by positive-only learning via
Answer Set Programming, with SL-based pruning. Our framework Sippy is capable of automatically
learning predicates for complex structures with payload constraints and mutual recursion, facilitat-
ing applications of SL-based tools for deductive verification and program synthesis. In the future,
we are planning to explore other possible applications of our predicate synthesiser for program
repair [65], program comprehension [9], and Computer Science education [41].

Data Availability

The implementations of Sippy, Grippy, and the benchmark harness necessary for reproducing our
experimental results in Sec. 6 are available online [70].
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